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ORIGIN OF DUST

• Historically, steady mass loss from evolved AGB stars  
                                                = primary source for ISM dust

Problem:  Detection of large quantities of dust in high-z galaxies

• Supernovae (SN) (Type II) proposed  
as dust sources. 

• Alternative explanation: 
“grain regrowth” in the ISM

SN need to produce  
0.1-1 M! of dust to  
account for dust mass  
@ high redshift 



ORIGIN OF DUST
• Dust production rate of SN = very uncertain  

        Models                                observations 
Dust nucleation modelling predict  

that 0.1-1 M! of dust should 
condense in SN (type II). 

Before launch of Herschel, 
evidence for formation of not 
more than 10-3-10-2 M! of 

new dust in SN type II

Gall+ 2014



ORIGIN OF DUST
• Herschel + ALMA observations 

SN 1987A 

0.3M!carbon dust+  
0.5M! silicate dust

Crab Nebula 

                 0.24M! of  
                     28K dust

                           
                    

 0.025-0.040 M! of 80K dust  
+ 0.075 M! of 35K dust

Gomez+ 2012, Owen & Barlow 2015

Rho+ 2008, 
Barlow+ 2010,
Arendt+ 2014

Matsuura+ 2011,
Indebetouw+ 2014, 

Matsuura+ 2015

Cas A 



CAS A IN THE LITERATURE
• SCUBA 850 μm: 2-4 M! of dust @ 18 K !!! (Dunne et al. 2003)

• 850 μm emission due to foreground dust (Krause+2004)



CAS A IN THE LITERATURE
• JCMT 850 μm polarisation data (Dunne+ 2009):  

Polarisation attributed to 1 M
!
 of dust 

• Spitzer 24/70/160 μm photometry+  
IRS spectra (Rho+ 2008, Arendt+ 2014) 

0.04 M
!
 of warm  

silicate dust in  
shocked regions (Arendt+ 2014)                                                                                    

<0.1 M
!
 of dust 

(Sibthorpe+ 2010, Barlow+ 2010, 
Arendt+ 2014 )



CAS A IN THE LITERATURE
• Spitzer IRS spectra  

           show huge variety in grain composition

 
 
 
 
 

• Mostly silicate-type grains (MgSiO3, Mg2.4SiO4.4), 
but also Al2O3, amorphous carbon, CaAl12O19

Rho+ 2008,  
Arendt+ 2014  



CAS A IN THE LITERATURE
• Herschel PACS (70,100,160) + SPIRE (250,350,500)  

0.075 M
!
 of dust @ 35 K in inner region  

 
 
 
 
 

Barlow et al. (2010) 



CAS A IN THE LITERATURE
Large disagreements about dust mass formed in Cas A!

Why? 
+ Colder dust emits at longer wavelengths:  the colder the dust, the 
greater the required dust mass 

+ Difficult to separate:   
    - SN dust  
    - synchrotron radiation  
    - ISM dust  
    - line emission



OUR NEW APPROACH
• Spatially resolved component separation using: 

- IRAC 8 μm + WISE 12 μm + MIPS 24 μm 
- Herschel PACS 70/100/160 μm+SPIRE 250/350/500 μm images 
- PACS IFU spectra + SPIRE FTS spectra + Planck photometry
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CAS A: SYNCHROTRON 
RADIATION

• Spectral index (α=-0.707) + normalisation factor determined 
from recent Planck data  

• Extrapolation of 3.7 mm emission to IR/submm 

at 500 µm



CAS A: LINE EMISSION
Determine line contribution from: 
- Spitzer IRS spectra ([Ar III], [Ar II], [S IV], [Ne II], [NeIII])

 

- PACS IFU ([OI] 63μm, [OIII] 88μm, [OI] 145μm, [CII] 158μm) 

 

- SPIRE FTS (CO rotational lines + [CI] lines) 

[CI] 1-0 [CI] 2-1[OIII] 88

[Ar II]

[Ar III]
[S IV]

[Ne II]
[Ne III]

[O IV]
[Fe II]

[Si II]



CAS A: LINE EMISSION
[OIII]88 line contributes significantly to PACS 100 μm band 

No line contamination 
in outer regions 

4-5% [OIII]88 line 
contribution in inner 

regions

2-3% line contamination  
in reverse shock regions



CAS A: LINE EMISSION
PACS IFU does not cover entire remnant,  
              we use [Si II]35 line to trace [OIII]88 line contribution
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CAS A: ISM CONFUSION
Use SPIRE 500 μm image as ISM dust density tracer! 
(assuming that SN dust contributes marginally @ 500 μm)

Fig: Left: SPIRE 500 μm map (with synchrotron emission subtracted)  
Right: Correlation between F500 and Md (ISM) for SED models with fixed G=0.6G0.  



CAS A: ISM CONFUSION
               SED template? 

       Jones et al. 2013 dust model, 
      (hydrocarbons + amorphous silicates)  
       calibrated on Milky Way data 

                    

IS dust emission depends on radiation field G*  
heating the dust:  
G = 0.3G0                         Td = 14.6 K
G = 0.6G0                         Td = 16.4 K 
G = 1.0G0                         Td = 17.9 K 

*Habing field G = FUV radiation field (6-13.6eV), 
normalised to G0 = 1.6x10-3 erg/s/cm2  



CAS A: ISM CONFUSION

             Radiation field? 

-  G varies from 0.2 G0 to 2.4 G0 in  
   the observed field around Cas A  
 
-  in immediate vicinity of Cas A,  
   G varies from 0.3 G0 to 1.0 G0 

Method: Determine radiation field  
based on SED models of the ISM  
regions around Cas A.

Cas A



CAS A: ISM CONFUSION
                                   

                G varies from 0.3 G0 to 1.0 G0, with median of G = 0.6 G0        
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Alternative method: PDR modelling based on fitting relative intensities of  
[CI] 1-0, 2-1, CO(4-3) lines detected in the ISM near to Cas A 
with Herschel SPIRE FTS

PDR toolbox 
Pound & Wolfire (2008)



CAS A: COMPONENTS
Based on the two independent approaches: G=0.6 G0 is best model

SED fitting and PDR models and residual maps all conclude:  
G = 0.6 G0 provides the best fit along the Cas A sightline



CAS A: SED FITTING
Step 1: subtraction of line+synchrotron emission

Step 2: fit 17-500 μm SED with multi-component  
           ISM+SN (hot, warm, cold) model

Step 3: repeat modelling for ISM with G0 = 0.3, 0.6, 1.0
             and various dust species 



- For G = 1.0 G0: max ISM contribution,  
little SN dust emission left

- SN dust mass depends on dust composition

- we rule out Mg0.7SiO2.7, Al2O3, CaAl12O19 
based on nucleosynthesis model predicted heavy  
element availability (Woosley & Weaver 1995)  

 Results for ISM model with G=0.6G0:

Dust species Md [M!] Td [K] Lower 
Md*

Max 
Md**

Mg0.7SiO2.7 50.3 26 11 1.21

MgSiO3 2.9 29 1.0 1.37

Mg2.4SiO4.4 2.6 29 0.8 0.93
Amorphous 

carbon 0.7 30 0.04 0.29

G0 = 0.3

G0 = 0.3

G0 = 0.6

G0 = 1.0

CAS A: GLOBAL FITS

*Lower Md : SED models without SN contribution at 500 μm
**Max Md : based on available material from nucleosynthesis models



CAS A: RESOLVED FITS
All maps convolved to SPIRE 500 μm resolution (FWHM =36.3”=0.6pc)
              79 (36” pixels) and 438 (14” pixels) resolution elements

      SN components at different temperatures: 



CAS A: RESOLVED FITS
Model safety check: how does model compare to data? 

Observations     Model     Residual      
MIPS24

PACS70

PACS100

PACS160

SPIRE250

SPIRE350

SPIRE500



CAS A: COMPONENTS



CAS A: MAIN RESULTS
1. Best SED fits using silicate-type grains (MgSiO3, Mg2.4SiO4.4)  

       ruling out CaAl12O19, Al2O3, Mg0.7SiO2.7 as dominant dust species 

2. Cold SN dust is distributed ~smoothly within reverse shock region  
       dust destruction by reverse shock  
        dust ejection along jets (?)

3. Best-fit model predicts 0.5-0.7 M! of (~30 K) silicate dust  
       sufficient to explain dust in early Universe*  

*if produced by other SNR + not destroyed by reverse shock

Dust species Md [M!] Lower Md Md [M!] Lower Md Max Md

MgSiO3 2.9 [29K] 1.0 0.7 [30K] 0.3 1.37
Mg2.4SiO4.4 2.6 [29K] 0.8 0.5 [32K] 0.2 0.93
Am. carbon 0.7 [30K] 0.04 0.4 [29K] 0.04 0.29

Global SED fits Spatially resolved fits



FUTURE OUTLOOK
1.  Analyse SPIRE FTS spectra (190-650 μm) of Cas A
     to get better constraint on dust emissivity

2.   Infrared analyses = limited by resolution  
          determine SN dust mass based  
     on Hα, [OIII] line asymmetries*

*We have an accepted ESO program to  
obtain X-SHOOTER spectra for 25 SNR  
  Bevan & Barlow 2016



CAS A: GLOBAL FITS
Model safety check: how does model compare to data? 

• Good agreement between  
model & observations !



CAS A: COMPONENTS



CAS A: COMPONENTS



CAS A: SCUBA850
SCUBA850: Model versus observations

Dunne et al. 2003


