THE DUST MASS IN CAS A FROM SPATIALLY RESOLVED HERSCHEL PHOTOMETRY

Ilse De Looze¹, Mike Barlow¹, Jeonghee Rho², Mikako Matsuura³, et al.

¹University College London ²SETI Institute, CA ³Cardiff University

Supernova remnants, Chania, Crete, June 10th 2016

ORIGIN OF DUST

Historically, steady mass loss from evolved AGB stars
 = primary source for ISM dust

Problem: Detection of large quantities of **dust in high-z galaxies**

- Supernovae (SN) (Type II) proposed as dust sources.
- <u>Alternative explanation:</u>
 "grain regrowth" in the ISM

SN need to produce 0.1-1 Mo of dust to account for dust mass

@ high redshift

ORIGIN OF DUST

Dust production rate of SN = very uncertain • Models

Dust nucleation modelling predict that 0.1-1 Mo of dust should condense in SN (type II).

observations

Before launch of Herschel, evidence for formation of not more than 10⁻³-10⁻² M_☉ of

new dust in SN type II

ORIGIN OF DUST

Herschel + ALMA observations

Matsuura+ 2011,

Indebetouw+ 2014,

Matsuura+ 2015

Rho+ 2008, Barlow+ 2010, Arendt+ 2014

0.025-0.040 M_{\bigodot} of 80K dust + 0.075 M_{\bigodot} of 35K dust

0.3M_☉ carbon dust+ 0.5M_☉ silicate dust

SN 1987A

Crab Nebula

28K dust

 $0.24 M_{\odot}$ of

Gomez+ 2012, Owen & Barlow 2015

SCUBA 850 µm: 2-4 Mo of dust @ 18 K !!! (Dunne et al. 2003)

• 850 µm emission due to foreground dust (Krause+2004)

- JCMT 850 µm polarisation data (Dunne+ 2009):
 Polarisation attributed to I M_o of dust
- Spitzer 24/70/160 µm photometry+ IRS spectra (Rho+ 2008, Arendt+ 2014)

- Spitzer IRS spectra
 - → show huge variety in grain composition

• Mostly silicate-type grains (MgSiO₃, Mg_{2.4}SiO_{4.4}), but also Al_2O_3 , amorphous carbon, CaAl₁₂O₁₉

Total Non-thermal

1000

Warm dust Cold IS dust Cool dust COBE diffuse ISM

• Herschel PACS (70,100,160) + SPIRE (250,350,500) 0.075 M_o of dust @ 35 K in inner region

Large disagreements about dust mass formed in Cas A!

Why?

+ Colder dust emits at longer wavelengths: the colder the dust, the

greater the required dust mass

+ Difficult to separate:

- SN dust
- synchrotron radiation
- ISM dust
- line emission

OUR NEW APPROACH

- Spatially resolved component separation using:
 - IRAC 8 μ m + WISE 12 μ m + MIPS 24 μ m
 - Herschel PACS 70/100/160 µm+SPIRE 250/350/500 µm images
 - PACS IFU spectra + SPIRE FTS spectra + Planck photometry

CAS A: SYNCHROTRON RADIATION

- Spectral index (α=-0.707) + normalisation factor determined from recent Planck data
- Extrapolation of 3.7 mm emission to IR/submm

CAS A: LINE EMISSION

Determine line contribution from:

- Spitzer IRS spectra ([Ar III], [Ar II], [S IV], [Ne II], [NeIII])
- PACS IFU ([OI] 63µm, [OIII] 88µm, [OI] 145µm, [CII] 158µm)

CAS A: LINE EMISSION

[OIII]88 line contributes significantly to PACS 100 μ m band

CAS A: LINE EMISSION

PACS IFU does not cover entire remnant, we use [Si II]₃₅ line to trace [OIII]₈₈ line contribution

CAS A: ISM CONFUSION Use SPIRE 500 µm image as ISM dust density tracer! (assuming that SN dust contributes marginally @ 500 µm)

Fig: Left: SPIRE 500 μ m map (with synchrotron emission subtracted) Right: Correlation between F500 and M_d (ISM) for SED models with fixed G=0.6G₀.

CAS A: ISM CONFUSION

SED template?

Jones et al. 2013 dust model, (hydrocarbons + amorphous silicates) calibrated on Milky Way data

IS dust emission depends on radiation field **G*** heating the dust:

$$G = 0.3G_0 \longrightarrow T_d = 14.6 \text{ K}$$

$$G = 0.6G_0 \longrightarrow T_d = 16.4 \text{ K}$$

$$G = 1.0G_0 \longrightarrow T_d = 17.9 \text{ K}$$

***Habing field G** = FUV radiation field (6-13.6eV), normalised to $G_0 = 1.6 \times 10-3$ erg/s/cm²

CAS A: ISM CONFUSION

Method: Determine radiation field based on SED models of the ISM regions around Cas A.

Radiation field?

- G varies from 0.2 G₀ to 2.4 G₀ in the observed field around Cas A
- in immediate vicinity of Cas A, G varies from 0.3 G₀ to 1.0 G₀

CAS A: ISM CONFUSION

Alternative method: PDR modelling based on fitting relative intensities of [CI] I-0, 2-I, CO(4-3) lines detected in the ISM near to Cas A with Herschel SPIRE FTS

G varies from 0.3 G_0 to 1.0 G_0 , with median of G = 0.6 G_0

CASA: COMPONENTS

Based on the two independent approaches: $G=0.6 G_0$ is best model

SED fitting and PDR models and residual maps all conclude: $G = 0.6 G_0$ provides the best fit along the Cas A sightline

CASA: SED FITTING

Step I: subtraction of line+synchrotron emission

<u>Step 2</u>: fit 17-500 μm SED with multi-component ISM+SN (hot, warm, cold) model

Step 3: repeat modelling for ISM with $G_0 = 0.3, 0.6, 1.0$ and various dust species

CASA: GLOBAL FITS

- For $G = 1.0 G_0$: max ISM contribution, little SN dust emission left
- SN dust mass depends on dust composition
- we rule out Mg_{0.7}SiO_{2.7}, Al₂O₃, CaAl₁₂O₁₉
 based on nucleosynthesis model predicted heavy element availability (Woosley & Weaver 1995)

Results for ISM model with G=0.6G₀:

Dust species	M _d [M _O]	T _d [K]	Lower M _d *	Max M _d **
Mg _{0.7} SiO _{2.7}	50.3	26		1.21
MgSiO ₃	2.9	29	1.0	1.37
Mg _{2.4} SiO _{4.4}	2.6	29	0.8	0.93
Amorphous carbon	0.7	30	0.04	0.29

*Lower M_d : SED models without SN contribution at 500 μ m **Max M_d : based on available material from nucleosynthesis models

CAS A: RESOLVED FITS

All maps convolved to SPIRE 500 μ m resolution (FWHM =36.3''=0.6pc) 79 (36'' pixels) and 438 (14'' pixels) resolution elements

SN components at different temperatures:

CAS A: RESOLVED FITS

Model safety check: how does model compare to data?

CAS A: COMPONENTS

CASA: MAIN RESULTS

- I. Best SED fits using <u>silicate-type grains</u> (MgSiO₃, Mg_{2.4}SiO_{4.4})
 - --- ruling out CaAI12O19, AI2O3, Mg0.7SiO2.7 as dominant dust species
- 2. Cold SN dust is distributed ~smoothly within reverse shock region
 - dust destruction by reverse shock
 - → dust ejection along jets (?)
- 3. Best-fit model predicts 0.5-0.7 M_☉ of (~30 K) silicate dust

sufficient to explain dust in early Universe*

	Global SED fits		Spatially res		
Dust species	M _d [M _O]	Lower M _d	Md [M⊙]	Lower M _d	Max M _d
MgSiO ₃	2.9 [29K]	1.0	0.7 [30K]	0.3	1.37
Mg _{2.4} SiO _{4.4}	2.6 [29K]	0.8	0.5 [32K]	0.2	0.93
Am. carbon	0.7 [30K]	0.04	0.4 [29K]	0.04	0.29

*if produced by other SNR + not destroyed by reverse shock

FUTURE OUTLOOK

I. Analyse SPIRE FTS spectra (190-650 µm) of Cas A to get better constraint on dust emissivity

Infrared analyses = limited by resolution
 determine SN dust mass based
 on Hα, [OIII] line asymmetries*

*We have an accepted ESO program to obtain X-SHOOTER spectra for 25 SNR

CASA: GLOBAL FITS

Model safety check: how does model compare to data?

CASA: COMPONENTS

CASA: COMPONENTS

CAS A: SCUBA850

SCUBA850: Model versus observations

