A New Approach to X-ray Analysis of SNRs
The SPIES Project

Kari A. Frank Pennsylvania State University
David Burrows Pennsylvania State University
Vikram Dwarkadas University of Chicago

Supernova Remnants
June 2016
Crete, Greece
SNRs in (thermal) X-rays

- Shocked Plasma
 - Abundances
 - Kinematics
 - Temperatures
 - ...
 - => SN type, age, plasma conditions, CSM/ISM environment

- Difficult to characterize entire volume of SNR
 - Projection effects
 - Complex morphology
 - Many spectral components
 - Paucity of photons

Chandra ACIS (Frank+2015)
SNRs in (thermal) X-rays

- Shocked Plasma
 - Abundances
 - Kinematics
 - Temperatures
 - ...
 - => SN type, age, plasma conditions, CSM/ISM environment

- Difficult to characterize entire volume of SNR
 - Projection effects
 - Complex morphology
 - Many spectral components
 - Paucity of photons

Chandra ACIS (Yang+2008)
SPIES Project

Smoothed Particle Inference Exploration of SNRs

- MCMC procedure to fit the event file
 - Event positions and energies are not separated – truly spatially resolved spectroscopy

- Does not require unusually long exposure times

- Does not require strict assumptions on the spatial morphology

- Capability to model many spectral components along a line-of-sight and in the plane of the sky

- SPIES Project: Apply SPI to sample of 14 SNRs observed with XMM
 - Characterize full volume of SNR plasma
 - Variety of ages, types, and environments
Smoothed Particle Inference
Blob Spatial + Spectral Model → Generate Model Photons → Fold Through XMM Response → Compare Events → MCMC: Choose New Parameters and Repeat

$N_H, kT, n_eT, Mg, Si, S, Fe$

Observed Events

Model Events

SPI Fitting in Action
Data Products

- Set of spectral and spatial parameters for every blob for every iteration after convergence
 - Representative of the plasma conditions throughout the SNR

- Parameter Distributions

- Parameter Maps

- Can slice the data in any model dimension
 - e.g. map the abundances of the highest temperature plasma only
Data Products

- Set of spectral and spatial parameters for every blob for every iteration after convergence
 - Representative of the plasma conditions throughout the SNR

- Parameter Distributions

- Parameter Maps

- Can slice the data in any model dimension
 - e.g. map the abundances of the highest temperature plasma only
RCW 103

Preliminary Results
RCW 103

Known Information

- Shell Morphology
- Distance ~ 3.3 kpc
- Age ~ 2000 years
- Diameter $\sim 9'$
- Core Collapse
 - Anomalous CCO
- X-ray Emission dominated by shocked CSM
- Frank+2015

XMM Observation

- MOS 1 and MOS 2
- Exposure $= 76$ ks
- $\sim 7.4 \times 10^6$ counts
- Si, S, Mg, Fe, Ne lines
 - not uniform across SNR
RCW 103

Known Information

- Shell Morphology
- Distance ~ 3.3 kpc
- Age ~ 2000 years
- Diameter ~ 9’
- Core Collapse
 - Anomalous CCO
- X-ray Emission dominated by shocked CSM
- Frank+2015

XMM Observation

- MOS 1 and MOS 2
- Exposure = 76 ks
- ~7.4×10^6 counts
- Si, S, Mg, Fe, Ne lines
 - not uniform across SNR
Parameter Distributions

- **kT (keV)**
 - Values: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2
- **Si (Si₆)**
 - Values: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2
- **density (cm⁻³)**
 - Values: 1, 10, 100
- **nₑT (s cm⁻³)**
 - Values: 5e11, 1e12, 1.5e12, 2e12
Maps

Emission Measure (cm⁻³)
Plasma Components

Emission Measure (cm$^{-3}$)

Ionization Age (s cm$^{-3}$)

High kT
kT > 0.4 keV

Low kT
kT < 0.4 keV

Emission Measure (cm$^{-3}$)
Ionization Age (s cm$^{-3}$)

$n_e T$ (s cm$^{-3}$)

$n_e T$ (s cm$^{-3}$)
W49B
Preliminary Results
W49B

Known Information

- Elongated Central Bar
- Distance ~ 8 kpc
- Age ~ 1000-6000 years
- Diameter ~ 5'
- Core Collapse
 - No central object
 - Possibly jet-driven SN
- X-ray Emission dominated by shocked ejecta
- Miceli+2006, Lopez+2013(a), Lopez+2013(b)

XMM Observation

- MOS 1, MOS 2, and pn
- Exposure = 18.2 ks
- ~5×10^5 counts
- Si, S, Ar, Ca, Cr, Mn, Fe lines
 - not uniform across SNR

Chandra ACIS (Lopez+2013)
W49B

Known Information

- Elongated Central Bar
- Distance ~ 8 kpc
- Age ~ 1000-6000 years
- Diameter ~ 5’
- Core Collapse
 - No central object
 - Possibly jet-driven SN
- X-ray Emission dominated by shocked ejecta
- Miceli+2006, Lopez+2013(a), Lopez+2013(b)

XMM Observation

- MOS 1, MOS 2, and pn
- Exposure = 18.2 ks
- ~5×10^5 counts
- Si, S, Ar, Ca, Cr, Mn, Fe lines
 - not uniform across SNR
Parameter Distributions

- **kT (keV)**
- **density (cm$^{-3}$)**
- **Fe (Fe$_{\odot}$)**
- **Ca (Ca$_{\odot}$)**
Emission Measure (cm$^{-3}$)
Plasma Components

Emission Measure (cm\(^{-3}\)) kT (keV) Sulfur (S\(_\odot\))

High Density n > 4 cm\(^{-3}\)

Low Density n < 4 cm\(^{-3}\)
Abundance Ratios

Nucleosynthesis products from Nomoto+2006 (Isotropic) and Maeda+2003 (bipolar) models
Conclusions and What’s Next
Conclusions

- Smoothed Particle Inference
 - addresses many of the drawbacks of typical X-ray analysis methods
 - can characterize plasma in **full volume** of SNRs with typical X-ray exposure times
 - deeper investigation of **different plasma components**

![Diagram of data flow and events]
What’s Next

- RGS
- Non-thermal spectral components
- Expand to full 14 SNR sample
 - Ages
 - Types
 - Environments

<table>
<thead>
<tr>
<th>SNR Name</th>
<th>Angular Size (arcmin)</th>
<th>Type</th>
<th>D (kpc)</th>
<th>Radius (pc)</th>
<th>Age (yr)</th>
<th># EPIC counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas A</td>
<td>5</td>
<td>CC</td>
<td>3.4</td>
<td>3.8</td>
<td>333</td>
<td>5.2×10^8</td>
</tr>
<tr>
<td>W49B</td>
<td>4 x 3</td>
<td>CC</td>
<td>8.0</td>
<td>6.3</td>
<td>~ 1000</td>
<td>4.6×10^5</td>
</tr>
<tr>
<td>G11.2-0.3</td>
<td>4</td>
<td>CC</td>
<td>5.0</td>
<td>4.2</td>
<td>1628</td>
<td>3.1×10^5</td>
</tr>
<tr>
<td>Kes 73</td>
<td>4</td>
<td>CC</td>
<td>8.0</td>
<td>6.1</td>
<td></td>
<td>0.9×10^5</td>
</tr>
<tr>
<td>G292.0+1.8</td>
<td>12 x 8</td>
<td>CC</td>
<td>6.0</td>
<td>9.5</td>
<td>~ 3300</td>
<td>4.9×10^6</td>
</tr>
<tr>
<td>RCW 103</td>
<td>10</td>
<td>CC</td>
<td>3.3</td>
<td>5.4</td>
<td>~ 2000</td>
<td>4.7×10^6</td>
</tr>
<tr>
<td>3C 397</td>
<td>5 x 3</td>
<td>CC?</td>
<td>10</td>
<td>7</td>
<td>~ 5300</td>
<td>3.9×10^5</td>
</tr>
<tr>
<td>CTB 109</td>
<td>28</td>
<td>CC</td>
<td>3</td>
<td>16</td>
<td>1.4×10^4</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>Kepler</td>
<td>3</td>
<td>Ia</td>
<td>5.0</td>
<td>3.9</td>
<td>410</td>
<td>2.2×10^6</td>
</tr>
<tr>
<td>Tycho</td>
<td>8</td>
<td>Ia</td>
<td>2.4</td>
<td>3.7</td>
<td>437</td>
<td>8.0×10^6</td>
</tr>
<tr>
<td>SN 1006</td>
<td>30</td>
<td>Ia</td>
<td>2.2</td>
<td>9.5</td>
<td>1007</td>
<td>3.7×10^6</td>
</tr>
<tr>
<td>RCW 86</td>
<td>42</td>
<td>Ia</td>
<td>2.5</td>
<td>12</td>
<td>~ 1800</td>
<td>1.5×10^6</td>
</tr>
<tr>
<td>N132D</td>
<td>2.1 x 1.6</td>
<td>CC</td>
<td>50</td>
<td>21.5</td>
<td>~ 3150</td>
<td>1.2×10^6</td>
</tr>
<tr>
<td>DEM L71</td>
<td>1.2 x 1.4</td>
<td>Ia</td>
<td>50</td>
<td>11.9</td>
<td>~ 4360</td>
<td>7.3×10^5</td>
</tr>
</tbody>
</table>
Bonus Slides
Convergence

RCW 103: $\frac{\chi^2}{\text{dof}} = 1.23$

W49B: $\frac{\chi^2}{\text{dof}} = 1.27$
Definition of $[X/Fe]$:

$$[X/Fe] = \log_{10}(N_X/N_{Fe}) - \log_{10}(N_X/N_{Fe})_{\odot}$$
Maps

Ca (Ca$_\odot$)
Maps

Ionization Age (s cm\(^{-3}\))