Stochastic acceleration and magnetic damping in Tycho's SNR

Alina Wilhelm

In collaboration with Igor Telezhinsky, Vikram Dwarkadas and Martin Pohl

Chania, 09.06.16

Tycho's supernova remnant

Young historical type Ia SNR

radio

x-ray

gamma

Soft radio spectrum ~ 0.65 (Kothes et al. 2006)

Inconsistent with the standard prediction of Diffusive Shock Acceleration

Possible explanation: Alfvénic drift

Magnetic turbulence in the post-shock region Additional mechanism to Diffusive Shock Acceleration:

Stochastic Acceleration

Fast-mode waves are efficient Acceleration time: $\tau_{acc} \sim$ of few years

Damping mechanism: particle acceleration

Thickness of the turbulent region is small

More details: Pohl et. al. 2015

Momentum diffusion coefficient

Calculated at lower energies:

$$\tau_{acc} = const := \tau$$
 for $p \leq p_0 \sim 1$ GeV

Parametrization at higher energies:

$$\tau_{acc} = \tau \left(\frac{p}{p_0}\right)^m$$

Modeling SNR

Particle acceleration via kinetic approach:

$$\frac{\partial N}{\partial t} = \nabla (D_s \nabla N - \mathbf{v} N) - \frac{\partial}{\partial p} \left((N \dot{p}) - \nabla \frac{\mathbf{v}}{3} N p \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{N}{p^2} \right) + Q$$
Diffusion Advection Losses DSA SA Injection

- Plasma velocity profiles v from hydrodynamical simulations
- Computation of advected magnetic field (alternative: analytical profiles)
- Solving Transport equation for particle number density N (electrons & protons)
- > Synchrotron emission from electrons in magnetic field B
- > γ -rays from protons via neutral pion decay
- > γ -rays from electrons via inverse Compton scattering

Emission spectrum

Alina Wilhelm | Stochastic acceleration and magnetic damping in Tycho's SNR | 24.11.15 | Page 6

Results

Filaments

X-ray map **Intensity profile** 1.2 NE Blue: X-ray Red: Radio NW Extract 1 data 0.8 F/F_{max} 0.6 0.4 0.2 1.01 1.02 1.03 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 0.5-7 keV r/R_{sh}

 $B_d \sim 80 \ \mu G$ fails to produce filaments

How can we explain the narrow rim structure in x-ray and radio?

Tran et al. 2015

Two scenarios

Synchrotron losses limited case

- > Lack of electrons!
- B_d = 330 µG required (Morlino & Caprioli 2012)
- > Strong energy-dependence → radio filaments unexplained

Magnetically limited case

Lack of magnetic field!

$$B(r) = (B_d - B_0) \exp\left(\frac{-(r - R_{sh})}{l_d}\right)$$

where ${\rm I}_{\rm d}$ is the damping length

Energy-dependence at the cut-off

> $B_d = 173 \ \mu G$ $B_0 = 20 \ \mu G$ $I_d = 0.015 \ R_{sh}$

Stochastic acceleration can explain soft radio spectrum

- > No Alfvénic drift needed
- > Soft hadronic γ -spectrum in GeV band
- > Filaments:
 - •X-ray filaments require 330 µG in loss-limited case
 - •173 µG needed in damping scenario
 - Radio profiles prefer magnetic field damping

Thank you for your attention!

Backup slides: Filament width

Results: Impact from Stochastic acceleration

Particle number density N

Deviates from DSA prediction: N~ p^{-2}

SA peak determined by m, p_ and au

To stay in agreement with radio data: $m \in [0.15, 0.25]$ $\tau \in [2.4, 3.0]$

Synchrotron emission

Results: three different cases

Model A:

Model B:

Damped MF B_d=173 μ G I_d=0.015 \cdot R_{sh} K_{e/p}=1/100

Model C:

Damped MF B_d=330 μ G I_d=0.02 · R_{sh} K_{e/p}=1/600

