Stochastic acceleration and magnetic damping in Tycho's SNR

Alina Wilhelm

In collaboration with Igor Telezhinsky, Vikram Dwarkadas and Martin Pohl

Chania, 09.06.16
Tycho's supernova remnant

Young historical type Ia SNR

NRAO/VLA Archive Survey

O.Krause et.al.

VERITAS Collaboration Acciari et al.

Soft radio spectrum ~ 0.65 (Kothes et al. 2006)

Inconsistent with the standard prediction of Diffusive Shock Acceleration
Possible explanation: Alfvénic drift

Shock restframe

For radio data compression factor $r=3.5$ is required!

$$r = \frac{v'_u}{v'_d} = \frac{v_u - v_{A,u}}{v_d + h \cdot v_{A,d}}$$

For Tycho: $M_A = 10$ with $h=0$

Morlino & Caprioli 2012; Slane et. al 2014

Contradictions:

Alfvén wave transmission: helicity h negative!

$r > 4 \implies$ harder spectrum!

Vanio and Schlickeiser 1999

Growth of Bell’s instability to debatable

Niemiec et al. 2008

Alina Wilhelm | Stochastic acceleration Tycho’s SNR | 24.11.15 | Page 3
Alternative approach

Magnetic turbulence in the post-shock region
Additional mechanism to Diffusive Shock Acceleration:

Stochastic Acceleration

Fast-mode waves are efficient

Acceleration time: \(\tau_{acc} \sim \) of few years

Damping mechanism: particle acceleration

Thickness of the turbulent region is small

More details: Pohl et. al. 2015
Momentum diffusion coefficient

Calculated at lower energies:

\[\tau_{acc} = const := \tau \quad \text{for} \quad p \leq p_0 \sim 1 \text{ GeV} \]

Parametrization at higher energies:

\[\tau_{acc} = \tau \left(\frac{p}{p_0} \right)^m \]

\[D_p = \frac{p^2}{\tau} \quad \text{for} \quad p \leq p_0 \]

\[D_p = \frac{p^2}{\tau} \left(\frac{p}{p_0} \right)^{-m} \quad \text{for} \quad p > p_0 \]
Modeling SNR

Particle acceleration via \textbf{kinetic approach}:

\[
\frac{\partial N}{\partial t} = \nabla \left(D_s \nabla N - \mathbf{v} N \right) - \frac{\partial}{\partial p} \left(N \dot{p} - \nabla \frac{\mathbf{v}}{3} N p \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{N}{p^2} \right) + Q
\]

\text{Diffusion} \quad \text{Advection} \quad \text{Losses} \quad \text{DSA} \quad \text{SA} \quad \text{Injection}

\begin{itemize}
 \item Plasma velocity profiles \(\mathbf{v} \) from hydrodynamical simulations
 \item Computation of advected magnetic field (alternative: analytical profiles)
 \item Solving Transport equation for particle number density \(N \) (electrons & protons)
 \item Synchrotron emission from electrons in magnetic field \(\mathbf{B} \)
 \item \(\gamma \)-rays from protons via neutral pion decay
 \item \(\gamma \)-rays from electrons via inverse Compton scattering
\end{itemize}

\text{Emission spectrum}
Results

Electron-to-proton ratio:

$$K_{e/p} := \frac{N_e}{N_p} \approx \frac{1}{100}$$

Minimum magnetic field:

$$B_d \sim 80 \, \mu \text{G}$$

Reacceleration region:

$$\sim 10^{-3} \, R_{sh}$$
Filaments

How can we explain the narrow rim structure in x-ray and radio?

Tran et al. 2015

Blue: X-ray
Red: Radio

B_d ~ 80 μG fails to produce filaments
Two scenarios

Synchrotron losses limited case

- Lack of electrons!
- \(B_d = 330 \, \mu G \) required (Molino & Caprioli 2012)
- Strong energy-dependence \(\rightarrow \) radio filaments unexplained

Magnetically limited case

- Lack of magnetic field!

 \[
 B(r) = (B_d - B_0) \exp\left(\frac{-(r - R_{sh})}{l_d}\right)
 \]

 where \(l_d \) is the damping length

- Energy-dependence at the cut-off
- \(B_d = 173 \, \mu G \quad B_0 = 20 \, \mu G \quad l_d = 0.015 \, R_{sh} \)
Summary

- Stochastic acceleration can explain soft radio spectrum
- No Alfvénic drift needed
- Soft hadronic γ-spectrum in GeV band
- Filaments:
 - X-ray filaments require 330 µG in loss-limited case
 - 173 µG needed in damping scenario
 - Radio profiles prefer magnetic field damping

Thank you for your attention!
Backup slides: Filament width

![Graph](image)

Graph 1:
- X-axis: \(r/R_{sh} \)
- Y-axis: \(F/F_{max} \)

- Curves for 0.2 keV, 1 keV, 5 keV, and 10 keV.

Graph 2:
- Y-axis: \(x_{1/2} \)
- X-axis: \(E_{sy} [\text{keV}] \)

- Curves for Model B_{low}, Model B, and Model C.
Results: Impact from Stochastic acceleration

Particle number density N

- Deviates from DSA prediction: $N \sim p^{-2}$
- SA peak determined by m, p_0 and τ
- To stay in agreement with radio data:

 $m \in [0.15, 0.25] \quad \tau \in [2.4, 3.0]$
Results: three different cases

Model A:
Transported MF
$B_d = 83 \, \mu G$
$K_{e/p} = 1/100$

Model B:
Damped MF
$B_d = 173 \, \mu G$
$I_d = 0.015 \cdot R_{sh}$
$K_{e/p} = 1/100$

Model C:
Damped MF
$B_d = 330 \, \mu G$
$I_d = 0.02 \cdot R_{sh}$
$K_{e/p} = 1/600$