SNRs : an Odyssey in space after stellar death June, 6-11, 2016

Middle-aged SNRs W44 (& IC443) and Cosmic-Rays: most likely reacceleration

Martina Cardillo Elena Amato, Pasquale Blasi INAF – Oss. Astrofisico di Arcetri

OVERVIEW

Energy (eV)

Ackermann et al.

10¹¹

Energy (eV)

10¹²

ardillo et al. 2014

10¹⁰

10¹

REACCELERATION OR ACCELERATION?

ACCELERATION

- \diamond Freshly accelerated CRs with a spectral index $\alpha = (3r_{sh})/(r_{sh}-1)$ at low-energies
- \Rightarrow Broken power-law $\alpha = 2.2$ below E~10 GeV and $\alpha = 3.2$ above E~10 GeV
- Malkow steepening due to Alfvèn damping

REACCELERATION

Crushed Cloud model (Bla Galactic CRs or injected CRs

Reacceleration or acceleration

Compression

- Pre-existing Galactic CR protons & electrons
- Reacceleration \rightarrow hardening of \diamond spectral indices steeper than
- $\alpha = (3r_{sh})/(r_{sh}-1)$ \diamond Compression \rightarrow higher energies,
 - higher spectrum $(s = (n_2/n_0)/r_{sh})$
- Energy losses pp/ionization & ioniz/ synch/Brems/IC
- Low-energy cut off and Malkov steepening

GALACTIC SPECTRUM: VOYAGER 1 + AMS

Local Interstellar Spectrum from Voyager 1 (Potgieter 2013,2014)

REACCELERATION: our model

 Hydrogen and Helium contribution

 Consideration also of the only compressed Galactic component Surface filling factor: 4πξR_{sh}²v_{sh}t_{int}

 Simple PL spectrum with no steepening but HE cut-off due to the limited time (fully ionized pre-shock medium)

Maximum momentum

L_c~ 0.09 pc

 $p_{\rm M} = 7 \text{ GeV/c} (B_0/30 \mu \text{G}) (t_{\rm int}/15000 \text{ yrs})^3 (L_c/0.1 \text{ pc})^{-2} (v_{\rm sh}/130 \text{ km/s})^6$

Kolmogorov Turbulence

D(E)=1/3 $r_L c (k/k_0)^{2/3}$

 $B_0 = b (n_0 / 1 \text{ cm}^{-3})^{1/2} \sim 34 \ \mu\text{G}$ $n_m = 94 \ n_0 \ b (v_{sh} / 10^7 \ \text{cm/s}) \sim 10^4 \ \text{cm}^{-3}$ $B_m = (3/2)^{1/2} (n_m / n_0) \ B_0 \sim 1 \ \text{mG}$

PM~11 GeV/C

REACCELERATION: our model

Contribution from Acceleration

Very high fraction ξ of the SNR shell has to be covered by the cloud in order to obtain a good explanation of the data.

We consider a possible contribution from freshly accelerated CRs in order to alleviate this problem and we found a good fit for:

ξ x ξ_{cr} ~ 6.4 x 10⁻⁵

Fermi-LA Pion emissio Primary Bremsstrahlung 10⁻⁵ ecendary Bremsstrahlung 10-4 Total Gammă E² dN/dE [MeV/cm2/s] dN/dE[MeV/cm2/s 10⁻⁶ 10⁻⁵ പ 10-7 10⁻⁶ Primary Synchroti Secondary Synchrotron 10⁻⁸ 10^{2} 10^{2} 10³ 10³ 10⁴ 10⁵ 10^{4} 10 E [MeV] E [MHz]

Cardillo, Amato, Blasi, submitted to A&A

Reacceleration + Acceleration

Only Compression

Cardillo, Amato, Blasi submitted to A&A

Very weak shock of middle aged SNRs

Possible Inhibition of the reacceleration and only compressed particle contribution

surf. filling factor ξ~ 65%

<u>IC443</u>

Cardillo, Amato, Blasi II in preparation

CONCLUSIONS

♦ Reacceleration and compression of pre-existing CRs can explain gamma-ray and radio emissions from W44 (and IC443)

The basic form of the reacceleration mechanism can explain data:

→ no broken-power law distributions
→ no very steep high-energy index

♦The only compression of pre-existing Galactic CRs could explain gamma-ray emission from the two middle-aged SNRs.

 \diamond Mixed reaccelerated and weakly accelerated particles (ξ_{cr}) provide a good fit of the data, alleviating the surface filling factor problem

Thank you very much!