X-raying Supernova Remnants in the Magellanic Clouds

Pierre Maggi

CEA Saclay

The XMM-Newton LMC survey collaboration: **Frank Haberl (PI)**, G. Vasilopoulos, R. Sturm, W. Pietsch, J. Greiner, P. Kavanagh, M. Sasaki, L. Bozzetto, M. Filipović, Y.-H. Chu, R. A. Gruendl, S. D. Points, J. Dickel, R. Williams

and F. Acero & J. Ballet (CEA Saclay)

< 🗆 🕨

PIERRE MAGGI (CEA SACLAY)

X-RAYING SNRs IN THE MAGELLANIC CLOUDS

SNR2016, CHANIA, CRETE 1/16

INTRODUCTION

THE XMM-NEWTON SURVEY OF THE LMC
THE SNR POPULATION OF THE LMC
SNRs in the SMC and beyond
THE MOST EVOLVED TYPE IA SNRs

OBSERVATIONS THE XMM-NEWTON SURVEY OF THE LMC

FROM ROSAT TO XMM-NEWTON

10× more sources, diffuse emission
 Spatial/spectral analysis of all SNRs

OBSERVATIONS THE XMM-NEWTON SURVEY OF THE LMC

59 CONFIRMED SNRs

- 51 covered by XMM, many for the 1st time
- 12 new with our XMM programmes
- 6 serendipitously in the survey

4 🗆 🕨 4 🗇 🕨 4 🖃

PIERRE MAGGI (CEA SACLAY)

10514-6840

J0530-700

J0511-6759

OBSERVATIONS

THE XMM-NEWTON SURVEY OF THE LMC

59 CONFIRMED SNRs

- 51 covered by XMM, many for the 1st time
- 12 new with our XMM programmes
- 6 serendipitously in the survey
- → First homogeneous global X-ray analysis

4 🗆 🕨 4 🗇 🕨 4 🖃

- Catalogue of spectral parameters
- Complete census of SNRs :
 - with Fe K emission
 - with SN ejecta emission

Grondin+2012 de Horta+2012 Maggi+2012, 2014 Bozzetto+2014 Kavanagh+2013, 2015

PIERRE MAGGI (CEA SACLAY)

10514-6840

10530-701

DEM 1 21

10511-6759

X-RAVING SNR'S IN THE MAGELLANIC CLOUDS

INTRODUCTION THE XMM-NEWTON SURVEY OF THE LMC THE SNR POPULATION OF THE LMC (Results from Maggi et al. 2016, A&A 585, A162) SNRs IN THE SMC AND BEYOND

• The most evolved type IA SNRs

LMC ABUNDANCES MEASURED WITH SNRs

- Using sub-samples unaffected by SN ejecta → LMC ISM abundance
- Metallicity between 0.2 and 0.5 solar
- ► Lower [O/Fe] (by 0.15 dex) compared to ASCA SNRs (Hughes et al. 1998) → SN ejecta contamination (confirmed with Chandra, Schenck et al. 2016)

PIERRE MAGGI (CEA SACLAY)

How to type all the sample ?

- Typing methods are limited to relatively young, bright remnants
 - → More than half unknown
- \Rightarrow Tentative typing of the whole sample based on the local stellar environment

 $N_{\rm CC}/N_{\rm Ia}$ is 1.47 (1.2–1.8) based on star formation, or 1.35 (1.1–1.5) including spectral results (SN ejecta/pulsars)

Method	N _{CC} /N _{Ia}	Ref.	More type Ia SNe in the LMC ?
LMC SNRs Local SNe	1.1–1.5 3	this work Li+2011	 Unlikely biased either way → Specific SFH of the LMC (bursts 0.5 and 2 Gyr ago)
Abundances in galaxy clusters	3.5 (2–4) 1.7–3.5 1.5–3	Sato+2007 de Plaa+2007 Lovisari+2011	+ Timescale of type Ia SNe (the majority explodes within 2 Gyr)

THE SNR POPULATION OF THE LMC THE "3D" DISTRIBUTION OF LMC SNRs

Position of SNRs in the LMC compared to HI, H α , and red continuum

SPATIAL CORRELATION WITH:

- ► Sites of star formations (giant H II regions, supergiant shells) → CC SNRs
- ► High stellar densities, or "empty" regions → type Ia SNRs

< □

" N_H fraction" = $N_H^X/N_H^{21 \text{ cm}}$ gives the line-of-sight position relative to the main gas disc

- SNRs in the Bar are (almost) all in front of the disc :
 Supports the (challenged) findings that the Bar is indeed "floating" in front of the disc
- SNRs in 30 Dor → behind:
 Confirms that 30 Dor is on the far side of the LMC
- N_H fraction \gg 1.2 ?
- molecular phase!

Adding a sense of depth with X-ray spectra

(Contours: $N_H = 1 \& 3 \times 10^{21} \text{ cm}^{-2}$ (Kim et al. 2003)

< □ ▶ < 🗇 ▶ < Ξ

XMM-Newton 0.2-1.0 keV 1.0-2.0 keV 2.0-4.5 keV

A SMALLER POPULATION

- 19 SNRs
- Complete (full coverage)
- Ideal for comparisons

Image from the SMC survey (Haberl+2012, Sturm+2012)

PIERRE MAGGI (CEA SACLAY)

${\rm SNRs}$ in the ${\rm SMC}$ and beyond

A SYSTEMATIC XMM-NEWTON ANALYSIS

SNRs in the SMC and beyond

COMPARISON OF SNRs IN EXTERNAL GALAXIES

XLF (Maggi+2016)

MAIN DIFFERENCES:

• Numbers:

M33 dominates (better coverage ?)

• Shape: M31 ~ M33, SMC flatter LMC shape is more complex: Bright tail Flat faint end (incomplete) SNRs in the SMC and beyond

COMPARISON OF SNRs IN EXTERNAL GALAXIES

XLF scaled by SFR

radio LF, Chomiuk & Wilcots 2009

Shape differences subsist (particularly in SMC, completeness issue in LMC).
X-ray luminosity function is not universal, unlike radio LF
→ effects of metallicity and ISM density

PIERRE MAGGI (CEA SACLAY)

X-RAYING SNRs IN THE MAGELLANIC CLOUDS

SNR2016, CHANIA, CRETE 12 / 16

INTRODUCTION THE XMM-NEWTON SURVEY OF THE LMC THE SNR POPULATION OF THE LMC SNRs in the SMC and beyond THE MOST EVOLVED TYPE IA SNRS

The most evolved type IA SNRs

HOT IRON IN THE SKY

Prototype: DEM L238 (Borkowski+2006)

- Shell: shocked ISM - Iron-rich core, X-ray bright

Iron-rich SNRs discovered in Maggi+2014, Bozzetto+2014, Kavanagh+2015

IRON-RICH GAS IN THE INTERIOR

- *kT*_{Fe} is 0.6 keV 1 keV
- Inferred $M_{\rm Fe}$ 0.5 to 1.5 M_{\odot}

Could NOT be observed in the Galaxy

4 □ ▶ 4 同 ▶ 4 三

PIERRE MAGGI (CEA SACLAY)

X-RAYING SNRs IN THE MAGELLANIC CLOUDS

SNR2016, CHANIA, CRETE 13 / 16

The most evolved type IA SNRs

A New Evolutionary Phase

PIERRE MAGGI (CEA SACLAY)

X-RAYING SNRs IN THE MAGELLANIC CLOUDS

THE MOST EVOLVED TYPE IA SNRs A New Evolutionary Phase

Phase I:

- Ejecta-dominated (X)
- Balmer-dominated (O)
- Lyman-dominated (UV)

Phase II: Early Sedov phase; ejecta + ISM shell (X) fading in optical little/no UV

Phase III:

- Fading-shell, central iron emission (X)
- ► Radiative cooling of shell traced by [O III] lines (O) and C III and O VI (UV, Blair+2006)

Phase IV:

- No shell (too cool), Hot iron cores (X)
- (very) faint "fossil" [S II] lines (O)
- No UV (?)

- Origin of the (asymmetric) morphology of the iron cores ?
- Evolution/fate of the iron cores ?
- \hookrightarrow Clues in deeper observations, finding new or missing objects, statistical analysis

Hitomi, Athena, will resolve the forest of Fe L-shell lines

20 ks ATHENA/X-IFU (MCSNR J0527-7104, Kavanagh+2015)

Thank you for your attention !

(Background: X-ray SNRs in the night sky over La Silla, Chile

PIERRE MAGGI (CEA SACLAY)

X-RAYING SNRs IN THE MAGELLANIC CLOUDS

SNR2016, CHANIA, CRETE 16 /

Sac