Investigating the Symmetry and Progenitors of Supernova Remnants

Laura A. Lopez Ohio State University 8 June 2016

In collaboration with:

Katie Auchettl (OSU), Carles Badenes (Pittsburgh), Daniel Castro (NASA GSFC), Sarah Pearson (Columbia), Charee Peters (UW Madison) Enrico Ramirez-Ruiz (UCSC), Pat Slane (CfA), Randall Smith (CfA), Hiroya Yamaguchi (NASA GSFC)

The wealth of data available on supernova remnants offers an exciting basis for comparison between sources

SNRs can be "typed" based on their symmetry

Jet-driven SNe (those with collimated outflows) occur at rates that we may expect to find a handful in MW and nearby galaxies

Identified two possible jet-driven SNRs, W49B and SMC 0104-72.3, based on six observational characteristics

SNRs with magnetars have the same symmetry as those without magnetars

NuSTAR hard X-ray imaging revealing important insights about explosion asymmetries, progenitors, and particle acceleration

By the Numbers

~375 known supernova remnants in the Milky Way, Large and Small Magellanic Cloud

➡ I64 MW, LMC, and SMC SNRs imaged with X-ray telescopes

~20 of I 64 are classified as Type Ia SNRs based on metal abundances

70 have detected central compact objects; 41 have pulsar wind nebulae

→ 70 are interacting with molecular clouds

Use SNRs to test SN models, especially with statistical studies between populations to discern trends

Typing Supernova Remnants

- I. Presence of a neutron star
- II. Light echoes (light reflected by nearby dust retains spectral info)
- III. Chemical abundances (e.g., O/Fe)
- IV. Environment (ISM/CSM density & structure, star formation)
- V. Morphological (a)symmetry

N103B

Me

My typing r

Calculate multipole moments of the X-ray image (Buote & Tsai 1995, 1996; Jeltema et al. 2005)

Derived the same as in the expansion of 2D gravitational potential within a radius R (Binney & Tremaine, Section 2.4):

$$\Psi(R,\phi) = -2Ga_0 \ln\left(\frac{1}{R}\right) - 2G\sum_{m=1}^{\infty} \frac{1}{mR^m} \left(a_m \cos m\phi + b_m \sin m\phi\right)$$
$$a_m(R) = \int_{R' \le R} \Sigma(\vec{x}') \left(R'\right)^m \cos m\phi' d^2 x'$$
$$b_m(R) = \int_{R' \le R} \Sigma(\vec{x}') \left(R'\right)^m \sin m\phi' d^2 x'$$

 $x = (R, \varphi)$ and Σ is the mass surface density (X-ray surface brightness in our calculation)

Lopez et al. 2009a/b

Measuring Symmetry

' image (Buote & Ts

Octupole

Calculate multipole moments of 1995, 1996; Jeltema et al. 2005)

Quadrupole measure of elli Large for elliptical sour small for circula

Octupole: measure of mirror asymmetry Large for sour brighter side; s homogeneous

Symmetry Sample

Symmetry of Silicon Line Emission Mirror Asymmetry

-opez et al. 2009b

Jet-Driven SNe

Study of SNe and long GRBs has revealed a continuum of "enginedriven" SNe which depend on retation and metallicity

Nickel; Oxygen

Mazzali ettazati.et 2006

GRB-SN connection

Normal SNe lbc are non-relativistic

SN Ibc

SN Broad Line Ic Long GRBs

SN BL-Ic: mildly relativistic ejecta, 10⁵² erg kinetic energy

SN BL-Ic associated with long GRBs are relativistic

Discovery of BL-Ic which are relativistic yet subenergetic (SN 2009bb, 2012ap)

Sub-energetic long GRBs

Soderberg et al. 2010; Chakraborti et al. 2014, Margutti et al. 2014, Milisavljevic et al. 2014

GRB-SN connection

Metallicity: Normal Ibc > BL-Ic > Long GRBs

Sanders et al. 2012

Long GRBs occur at even lower metallicity than SNe BL-Ic w/o GRBs (e.g., Modjaz et al. 2008; Graham & Fruchter et al. 2013)

Central Engines

No jet breakout		Yes jet breakout							
"Normal" SNe	Relativistic, sub-E non-GRB SNe	Relativistic, sub-E "Normal" GRBs GRB SNe							
Rotation rate of stellar core									

A Nearby Jet-Driven SNR? One SN / 40 years ~300 known SNRs ~200 CC SNRs Two CC / 100 years One Type Ib/c / 200 ~50 Type I b/c SNRs years ~I SNR was bipolar / A few % are bipolar or HNe: I / 10000 yrs **HNe**

Jet-Driven SNRs

Two jet-driven SNRs

Lopez et al. 2013a In Milky Way: Z~Z_{sun}

Lopez et al. 2014 In SMC: Z ~ 0.2 Z_{sun}

- I. Bipolar / jet structure
- 2. Jets enhanced in heavy metals
- 3. A nearby molecular cloud
- 4. Dense circumstellar material and cavity
- 5. Black holes or magnetars
- 6. Nucleosynthesis differs from spherical CC SNe
- 7. Kinematics

How Do We Recognize Jet-Driven SNRs? I. Bipolar / jet structure

Maintain bipolar structure for thousands of years

I. Bipolar / jet structure

Lopez et al. 2014

2. Jet should be enhanced in heavy metals Results

Nickel; Oxygen

Mazzali ettazati.et 2006

2. Jet should be enhanced in heavy metals

Lopez et al. 2013a

How Do We Recognize Jet-Driven SNRs? 3. Near a molecular cloud / recent star formation

X-rays; I.64 um [Fe II];
2.12 um (shocked H₂)
Keohane et al. 2007

Fermi-LAT gamma rays (2-6 GeV): Abdo et al.2010

3. Near a molecular cloud / recent star formation

4. Dense circumstellar material and cavity

X-rays; I.64 um [Fe II]; 2.12 um (shocked H₂) Keohane et al. 2007

4. Dense circumstellar material and cavity

Overionization: Rapid cooling of ejecta following expansion from dense CSM to rarefied ISM

Lopez et al. 2013b

Lopez et al. 2016

How Do We Recognize Jet-Driven SNRs?5. Black hole (or magnetar) central compact object

How Do We Recognize Jet-Driven SNRs? 6. Nucleosynthesis is different than spherical CC SN

> Nickel (iron) yields increase with asphericity, explosion energy and progenitor mass

Candidates have similar nickel yields:
 * 2003dh: ~0.25-0.45 M_{sun}
 * 2003lw: ~0.45-0.65 M_{sun}
 * 1998bw: ~0.20-0.70 M_{sun}

W49B: M_{Fe} ~ 0.80+/-0.60 M_{sun}

0104-72.3: Ne/Fe ~ 3-4

References: Woosley et al. 1999; Mazzali et al. 2003; Mazzali et al. 2006; Kaneko et al. 2007; Umeda & Nomoto 2008

How Do We Recognize Jet-Driven SNRs? 7. Kinematics: Fe faster than Si

Lopez et al. 2016

- I. Bipolar / jet structure
- 2. Jets enhanced in heavy metals
- 3. A nearby molecular cloud / star formation
- 4. Dense circumstellar material and cavity
- 5. Black holes or magnetars
- 6. Nucleosynthesis differs from spherical CC SNe
- 7. Kinematics

W49B: Satisfies #1-6 0104-72.3: Satisfies #1-3, 6

Identification of local analogs among the nearby SNR population would help to understand these explosions

The Magnetar / Jet-Driven SN Connection

Magnetar Associations and Distances										
Name	Proposed Associations	SNR Age (kyr)	References	Distance (kpc)	Measured To	Reference	<i>z</i> (pc)	$L_{\rm X}{}^{\rm a}$		
CXOU J010043.1-721134	SMC		1	62.4(1.6)	SMC	28		65		
4U 0142+61		•••		3.6(4)	0142+61	29	-27(3)	105		
SGR 0418+5729		•••		~ 2	Perseus Arm	30	$\sim \! 180$	0.00096		
SGR 0501+4516	SNR HB 9 ^b	4–7	2, 3	~ 2	Perseus Arm	31	~ 68	0.40		
SGR 0526-66	LMC, SNR N49 ^b , SL 463	~ 4.8	4–6	53.6(1.2)	LMC	32		189		
1E 1048.1-5937	GSH 288.3-0.5-28 ^b	•••	7	9.0(1.7)	1048.1-5937	29	-82(15)	49		
1E 1547.0-5408	SNR G327.24-0.13		8	4.5(5)	1547.0-5408	33	-10.3(1.1)	1.3		
PSR J1622-4950	SNR G333.9+0.0	<6	9	~ 9	J1622-4950	34	~ -16	0.44		
SGR 1627-41	CTB 33, MC -71, SNR G337.0-0.1		10, 11	11.0(3)	G337.0-0.1	11	-21.4(6)	3.6		
CXOU J164710.2-455216	Westerlund 1		12	3.9(7)	Westerlund 1	35	-29(5)	0.45		
1RXS J170849.0-400910				3.8(5)	J170849.0-400910	29	2.4(3)	42		
CXOU J171405.7-381031	SNR CTB 37B	$0.65^{+2.50}_{-0.30}$	13, 14	~13.2	CTB 37B	36	$\sim \! 86$	56		
SGR J1745-2900	Galactic Center	•••	15	~ 8.5	Galactic Center	37	~ -7.0	< 0.11		
SGR 1806-20	W31, MC 13A, Star cluster	•••	16, 17	$8.7^{+1.8}_{-1.5}$	Star cluster	38	$-36.7^{+6.3}_{-7.6}$	163		
XTE J1810-197				$3.5^{+0.5}_{-0.4}$	J1810-197	39	$-9.7^{+1.1}_{-1.4}$	0.043		
Swift J1822.3-1606	M17		18	1.6(3)	M17	18	-28.5(5.3)	< 0.0077		
SGR 1833-0832	•••						~3.6	<2.4		
Swift J1834.9-0846	SNR W41	~ 100	19, 20	4.2(3)	W41	40	-25(2)	< 0.0084		
1E 1841-045	SNR Kes 73	0.5–1	21, 22	$8.5^{+1.3}_{-1.0}$	Kes 73	22	$-0.97^{+0.11}_{-0.15}$	184		
SGR 1900+14	Star cluster	•••	23	12.5(1.7)	Star cluster	41	167(23)	90		
1E 2259+586	SNR CTB 109	14(2)	24, 25	3.2(2)	CTB 109	42	-55.6(3.5)	17		
SGR 1801–23	•••						~12			
SGR 1808–20		•••		•••			~ -45	•••		
AX J1818.8-1559						••••	~ -44	20		
AX 1845.0-0258	SNR G29.6+0.1	<8	26	~ 8.5	Scutum Arm	43	~ 16	2.9		
SGR 2013+34	W58	•••	27	~ 8.8	W58	27	~ -16	•••		

 Table 7

Olausen & Kaspi 2014

The Magnetar / Jet-Driven SN Connection

Lopez et al. 2011

The Magnetar / Jet-Driven SN Connection

NuSTAR: Nuclear Spectroscope Array Launched 13 June 2012

First focusing hard (3-79 keV) X-ray telescope in orbit

Harrison et al. 2013

Angular resolution: 18" PSF (FWHM) Spectral resolution: 400 eV at 10 keV; 900 eV at 60 keV Two identical 2x2 arrays with 12' FOV

NuSTAR Study of SNRs

In its first two years, NuSTAR observed SNRs for ~6.3 Ms

SN 1987A: 2.1 Ms (Boggs et al. 2015) Cassiopeia A: 2.4 Ms (Grefenstette et al. 2014, 2015)

G1.9+0.3: 350 ks (Zoglauer et al. 2014) Tycho: 750 ks (Lopez et al. 2015) Kepler: 250 ks (+250 ks soon)

G21.5-0.9: 280 ks (Nynka et al. 2014) MSH 15-52: 130 ks (An et al. 2014) Crab: 60 ks (Madsen et al. 2015)

Symmetry of Metals

Ti-44 is an alpha-rich freeze-out product, sensitive to mass cut, explosion asymmetry, and ejecta velocities (Timmes et al. 1996; Woosley et al. 2012)

 $t_{1/2} = 58.9$ yrs, mean lifetime = 85 yrs (Ahmad et al. 2006)

Observable lines at 68, 78, and 1157 keV

Titanium in Core-Collapse SNRs

Grefenstette et al. 2014

Titanium is located mostly inside of reverse shock Titanium is not spatially correlated with Fe

If Ti tracks ejecta, most ejecta must not be shocked yet
 Lack of Ti/Fe correlation not predicted by models

Symmetry of Metals

SN 1987A

Cassiopeia A

 $M_{44} = (1.6 + -0.4) \times 10^{-4} M_{sun}$ v = 700 + 500 km s⁻¹

 $M_{44} = (1.3 + -0.3) \times 10^{-4} M_{sun}$ $v = 1950 + -950 \text{ km s}^{-1}$

80

70

M₄₄ scales with asymmetry of explosions

Titanium in Type la SNRs G1.9+0.3 Tycho

Lopez et al. 2015

 $F < 2x10^{-5}$ ph cm⁻² s⁻¹ $M_{44} < 2 \times 10^{-4} M_{sun}$

Zoglauer et al. 2014

F < 1.5x10⁻⁵ ph cm⁻² s⁻¹ $M_{44} < 5 \times 10^{-5} M_{sun}$

Using Hard X-rays to Probe Particle Acceleration Tycho's SNR

8-10 keV

10-20 keV

Chandra 4-6 keV

Eriksen et al. 2011

20-40

$$E_{\rm max} = 120 \left(\frac{h\nu_{\rm rolloff}}{1~{\rm keV}}\right)^{1/2} \left(\frac{B}{\mu {\rm G}}\right)^{-1/2} ~{\rm TeV}$$

 $E_{\rm rolloff}(\rm age) \propto v_s^4 t^2 B^3 (\eta R_J)^{-2}$

 $E_{\rm rolloff}(\rm loss) \propto v_s^2 (\eta R_{\mathcal{J}})^{-1}$

 $E_{\rm rolloff}(\rm esc) \propto B^3 \lambda_{\rm mfp}^2.$

Age-limited case

g

et

Lopez

Loss-limited case

Escape-limited case

The wealth of data available on supernova remnants offers an exciting basis for comparison between sources

SNRs can be "typed" based on their symmetry

Jet-driven SNe (those with collimated outflows) occur at rates that we may expect to find a handful in MW and nearby galaxies

Identified two possible jet-driven SNRs, W49B and SMC 0104-72.3, based on six observational characteristics

SNRs with magnetars have the same symmetry as those without magnetars

NuSTAR hard X-ray imaging revealing important insights about explosion asymmetries, progenitors, and particle acceleration