Supernova Remnants: An Odyssey in Space after Stellar Death, Chania, Greece, June 8, 2016

A Chandra Study of G299.2-2.9: The Remnant of an Asymmetric Type Ia Explosion?

Sangwook Park

Department of Physics University of Texas at Arlington

With Seth Post,

- C. Badenes, D. Burrows,
- J. Hughes, B.-C. Koo,
- J.-J. Lee, P. Slane,
- + G. Dubner*

Introduction

X-ray-discovered: $d \sim 500$ pc, $\tau < 10^3$ yr (RASS, Busser et al. 1995) (Faint shell in radio/IR: e.g., ~0.5 Jy at 1 GHz [Green 2014])

Thermal composite/partial shell: ROSAT, Einstein, ASCA

(Busser et al. 1996, Slane et al. 1996, Bai & Wang 2000)

 $\tau_{\rm Sed}$ ~ 6-9000 yr for *d* ~ 5-6 kpc (Busser et al. 1996, Slane et al. 1996, Bai & Wang 2000)

Radio Σ -*D* relation: d > 15 kpc (Slane et al. 1996)

Low $E_0 \sim 1-3 \times 10^{50}$ erg at $d \sim 5$ kpc (Busser et al. 1996, Slane et al. 1996, Bai & Wang 2000)

Initial Chandra Observation

Multiple shells: sub-solar → Non-uniform medium Central metal-rich ejecta: Fe-, Si-, S-rich No O, Ne No compact remnant \rightarrow Type Ia SNR $\tau_{\rm Sed}$ ~ 4500 yr for d ~ 5 kpc $E_0 \sim 1.5 \times 10^{50}$ erg at $d \sim 5$ kpc (~10⁵¹ erg at d ~ 10 kpc) \rightarrow Sub-energetic Type Ia SN

→ Sub-energetic Type Ia Sin (unless d ≥ 10 kpc) in a non-uniform medium?

Deep Chandra Observation

640 ks Chandra ACIS-I (Post et al. 2014)

Red: 0.5-0.8 keV Green: 0.8-1.3 keV Blue: 1.7-2.1 keV

Complete coverage with $\sim 20 \times$ deeper exposure \rightarrow Central ejecta extends to west?

Si & Fe line maps

Post et al. 2014

Si line EW

Si & Fe line maps

Post et al. 2014

Asymmetric structure of enhanced Si and Fe (L) line emission

Characteristic Spectra

Post et al. 2014

Ejecta Distribution

640 ks *Chandra* (**Post et al. 2014**)

Red: 0.5-0.8 | Green: 0.8-1. Blue: 1.7-2.1 χ^2_{ν} map (**Post et al. 2016, in prep**)

Complete coverage with a ~20× deeper exposure

→ Central ejecta extends to west

¹/_{1.5}
~1600 sub-regions with >1500 cts each.
NEI-shock model fits with abundances fixed at shell values.

Ejecta Distribution

Detailed spatially-resolved spectral analysis

Post et al. 2016, in prep

Constraint on Distance

Post et al. 2016, in prep

HI fluxes toward G299.2-2.9 $(l, b \sim 299^\circ, -3^\circ)$ & kinematic <u>distances</u>

HI flux $(N_{\rm HI} \sim 4.7 \times 10^{21} \,\mathrm{cm}^{-2})$ for $v \le 0 \,\mathrm{km \, s}^{-1}$ & X-ray column $(N_{\rm H} \sim 3.2 \times 10^{21} \,\mathrm{cm}^{-2})$ place a conservative distance limit of $d < 8 \,\mathrm{kpc}$ for G299.2-2.9. $\rightarrow "d \sim 5 \,\mathrm{kpc}"$ $(d \ge 10 \,\mathrm{kpc})$

Post et al. 2016, in prep

Contact discontinuity map

For d = 5 kpcFe mass: ~0.2 M_{\odot} $E_0 \sim 2 - 4 \times 10^{50} \text{ erg}$ $\tau_{\text{Sed}} \sim 3800 - 4400 \text{ yr}$

Total ejecta mass for FS/CD ratio of ~2.1 (inner) and ~2.6 (outer) (Wang & Chevalier 2001, Hughes et al. 2003): $M_{\rm ej}$ ~ 0.3 - 1 M_{\odot}

Dynamics & Energetics

Post et al. 2016, in prep

1-D model calculations for SNR dynamics (Truelove & McKee 1999) compared with G299.2-2.9

Origin of Asymmetric Ejecta?

Si/(O+Mg)

Post et al. 2014

 → Asymmetric Type Ia explosion?
 Multiple off-center ignitions, doubledetonation (e.g., *Maeda et al. 2010, Fink et al. 2010*)

> Can such an explosion produce *"one-sided"* ejecta outflows (that would sustain for ~4000 yr after the explosion)?

Origin of Asymmetric Ejecta?

VRO 42.05.01 (Burrows & Guo 1994)

→ Ejecta expansion through nonuniform medium along the line of sight ?

Origin of Asymmetric Ejecta?

→ Ejecta expansion altered by modified CSM?

PN-like bi-polar outflows from the companion star (*Tsebrenko* & *Soker 2013*) ?

G299.2-2.9: Summary

Type Ia SNR with non-symmetric ejecta and environment: \rightarrow Asymmetric explosion and/or surrounding?

Ejecta mass and energetics: $M_{\rm Fe} \sim 0.2 \ M_{\odot}, M_{\rm ej} \lesssim 1 \ M_{\odot}$ $E_0 \sim 3 \times 10^{50} \ {\rm erg}$

 \rightarrow Sub-energetic (low-L, e.g., sub- M_{Ch}) Type Ia SN?

- \rightarrow Cosmic-ray effect ?
- → True geometry of reverse-shocked ejecta ? (*Hitomi* could've helped..)