3D Long-time Core-Collapse Supernova Simulations

Annop Wongwathanarat Ewald Müller Hans-Thomas Janka Victor Utrobin

Astrophysical Big Bang Laboratory

Max-Planck-Institut für Astrophysik

Institute for Theoretical and Experimental Physics

SNR2016: an odyssey in space after stellar death 8 June 2016

Predictions of Signals from Supernovae

Figure from Janka et al. (2012)

growing list !!!

Model	$M_{\rm ns}$	t _{exp}	$E_{\rm exp}$	$v_{\rm ns}$	$a_{\rm ns}$	$v_{\rm ns,\nu}$	$\alpha_{k\nu}$	$v_{\rm ns}^{\rm long}$	$a_{\rm ns}^{\rm long}$	$J_{\rm ns,46}$	$\alpha_{\rm sk}$	$T_{\rm spin}$
	$[M_{\odot}]$	[ms]	[B]	[Km s ⁻¹]	[Km/s ²]	[Km s ⁻¹]		KIII S		$[10^{10} \text{ g cm}^2/\text{s}]$	Ľ	[ms]
W15-1	1.37	246	1.12	331	167	2	151	524	44	1.51	117	652
W15-2	1.37	248	1.13	405	133	1	126	575	49	1.56	58	632
W15-3	1.36	250	1.11	267	102	1	160	_	_	1.13	105	864
W15-4	1.38	272	0.94	262	111	4	162	_	_	1.27	43	785
W15-5-lr	1.41	289	0.83	373	165	2	129	_	_	1.63	28	625
W15-6	1.39	272	0.90	437	222	2	136	704	71	0.97	127	1028
W15-7	1.37	258	1.07	215	85	1	81			0.45	48	2189
W15-8	1.41	289	0.72	336	168	3	160	_	-	4.33	104	235
L15-1	1.58	422	1.13	161	69	5	135	227	16	1.89	148	604
L15-2	1.51	382	1.74	78	14	1	150	95	4	1.04	62	1041
L15-3	1.62	478	0.84	31	27	1	51	_	—	1.55	123	750
L15-4-lr	1.64	502	0.75	199	123	4	120	_		1.39	93	846
L15-5	1.66	516	0.62	267	209	3	147	542	106	1.72	65	695
N20-1-lr	1.40	311	1.93	157	42	7	118			5.30	122	190
N20-2	1.28	276	3.12	101	12	4	159	_	_	7.26	43	127
N20-3	1.38	299	1.98	125	15	5	138	-	-	4.42	54	225
N20-4	1.45	334	1.35	98	18	1	98	125	9	2.04	45	512
B15-1	1.24	164	1.25	92	16	1	97	102	1	1.03	155	866
B15-2	1.24	162	1.25	143	37	1	140			0.12	162	7753
B15-3	1.26	175	1.04	85	19	1	24	99	3	0.44	148	2050

Models

As of 2013

Neutron star kicks by Gravitational tug-boat mechanism

W15-6

704 km/s

Model W15-6 Time: 15.10 ms NS displacement: 0.00 km

Nickel distribution

Ni shows hemispheric asymmetry

observed??? Constrain kick mechanism???

Shock dynamics

shock propagates according to blast wave solution (Sedov, 1959)

accelerates when pr³ decreases, and vice versa

RSG model

at He/H interface

→ meet reverse shock

Shock strongly accelerates --> RTI fingers stretch --> Reverse shock forms --> RTI fingers collide with Reverse shock

N20 model

Shock accelerates briefly --> Reverse shock forms --> Slow nickel bubbles collide with reverse shock and flattened

B15 model

at C+O/He interface

Significant growth of RTIs --> fragmentation of nickel bubbles

B15 model

at He/H interface

meet reverse shock

Shock accelerates briefly --> Reverse shock forms --> Fast nickel fingers ahead of reverse shock !!!

B15 model

meet reverse shock

→ shock breakout

Fast nickel fingers stretch --> inner part of ejecta trapped by reverse shock

N20 BSG model

Nickel too slow 1215 s 59.0 s N20-4-cw 1e10 cm 2e11 cm $v_r [1000 \text{ km/s}]$ $v_r [1000 \text{ km/s}]$ -1.2 0.49 2.1 3.7 2.1 -4.5 -1.1 5.3 at He/H_interface **RSG model** meet reverse shock Shock too 65.1 s 6236 s 3.0 F fast W15-2-cw v^{shck} 2.5 E $v_{max}(Ni)$ 2.0 E 1.5 1.0 0.5 E 2e10 cm 2e12 cm v_r [1000 km/s] v_r [1000 km/s] -3.2 0.56 2.3 7.4 4.3 -0.31 4.9 8.1

Woosley et al. (1988)

Woosley (2007)

~ 3700 km/s

< 2000 km/s

- NS kick by gravitational tug boat mechanism can explain observed average pulsar space velocity
- In high kick cases, hemispheric asymmetries of heavy elements are produced
- evolution of asymmetries associated with explosion mechanism connects to the density structure of the progenitor star
- Density structure of He shell and He/H interface are very important in determining the fate of heavy clumps

Conclusion II

 extending simulations to later phases, connecting SN ---> SNR (see poster by Michael Gabler)

 State-of-the-art approach for CCSN light curves using 3D explosion models --- > 1D radiation hydro taking into account 3D mixing

Beginning to connect SNe to SNRs !!!