RECENT DEVELOPMENTS ON THE SNR-CR CONNECTION Elena Amato

INAF-Osservatorio Astrofisico di Arcetri

Collaborators: Pasquale Blasi, Damiano Caprioli, Giovanni Morlino, ₁ Martina Cardillo, Rino Bandiera

Energy (eV)

POWER LAW SPECTRA $N(p) \propto p^{-\gamma_p}$ $\gamma_p = \frac{3u_1}{u_1 - u_2}$

ONLY DEPENDENT ON COMPRESSION RATIO!

INDEPENDENT OF SCATTERING PROPERTIES!!!

FOR STRONG SHOCKS: $u_1/u_2=4 \Rightarrow \gamma_p=4 \Leftrightarrow \gamma_e=2$

✓ IF δB SAME RESPONSIBLE FOR CR CONFINEMENT IN THE GALAXY: E_{max} ~GeV ✓ IF $\delta B \sim B_0$, E_{max} ~10³-10⁴ GeV (Lagage & Cesarsky 83)

•AMPLIFIED B IS REQUIRED TO REACH THE KNEE

•10% EFFICIENCY IMPLIES SHOCK MODIFICATION

DIFFUSIVE SHOCK ACCELERATION (WITH BACK REACTION)

- ✓ DYNAMICAL REACTION OF ACCELERATED PARTICLES
- ✓ SELF REGULATION OF THE INJECTION
- ✓ CR INDUCED B-FIELD AMPLIFICATION
- ✓ DYNAMICAL REACTION OF AMPLIFIED FIELD
- ✓ REVISED ACCELERATION TIME
- ✓ ESCAPE OF PARTICLES

TWO-FLUIDS: Drury & co. MONTECARLO: Ellison & co. FINITE DIFFERENCE: Berezhko, Volk & co. KINETIC: Amato & Blasi 05,06; Blasi et al.08, Caprioli et al 08,09,10,11

$$\frac{\partial F_w}{\partial x} = u \frac{\partial P_w}{\partial x} + \sigma E_w - \Gamma E_w$$

EVOLUTION OF WAVES

$$\frac{\partial \rho}{\partial t} = -\frac{\partial (\rho u)}{\partial x} \quad \begin{array}{c} \text{MASS} \\ \text{CONSERVATION} \end{array}$$

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} \left[\rho u^2 + P_g + P_c + P_w \right]$$

MOMENTUM CONSERVATION

$$\frac{\partial}{\partial t} \left[\frac{\rho u^2}{2} + \frac{P_g}{\gamma_g - 1} \right] = -\frac{\partial}{\partial x} \left[\frac{\rho u^3}{2} + \frac{\gamma_g P_g u}{\gamma_g - 1} \right] - \frac{1}{2} \frac{\mathsf{ENERGY}}{u \frac{\partial}{\partial x} \left[P_c + P_w \right] + \Gamma E_w}$$

$$\frac{\partial f(t,x,p)}{\partial t} + \hat{u}(x)\frac{\partial f(t,x,p)}{\partial x} = \frac{\partial}{\partial x}\left[D(x,p)\frac{\partial f(t,x,p)}{\partial x}\right] + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \text{TRANSPORTEQUATION} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \text{TRANSPORTEQUATION} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \text{TRANSPORTEQUATION} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \text{TRANSPORTEQUATION} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \text{TRANSPORTEQUATION} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \text{TRANSPORTEQUATION} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} \end{bmatrix} + \frac{p}{3}\frac{\partial f(t,x,p)}{\partial p}\frac{d\hat{u}(x)}{dx} \end{bmatrix}$$

CR MODIFIED SHOCKS

♦ CR STREAMING INDUCES PRESSURE GRADIENT UPSTREAM

- \diamond A PRECURSOR IS FORMED: FLUID
- PROGRESSIVELY SLOWS DOWN
- \diamond CR ESCAPE MAKES SHOCK RADIATIVE

 R_{TOT} >4 WHILE R_{SUB} <4

DENSITY OF ACCELERATED PARTICLES

DIFFERENT ENERGY PARTICLES HAVE DIFFERENT DIFFUSION LENGTHS
→ EXPERIENCE DIFFERENT R (<4 AT LOW EN, >4 AT HIGH EN) 6
→ SPECTRUM BECOMES CONCAVE (STEEP AT LOW EN. FLAT AT HIGH)

BASIC PREDICTIONS OF NL-DSA

HINTS OF EFFICIENT ACCELERATION:

COMPRESSION RATIO > 4:

CD VS SHOCK IN TYCHO (Warren et al 05) AND SN1006 (Cassam-Chenaii et al 08) AND EMISSION PROFILES (Morlino et al 10)

T₂ IS LOWER THAN EXPECTED:

IN RCW86 $T_2 \sim 1/10 T_{RH}$ (Helder et al 09, 13; Morlino et al 14)

CONCAVE SPECTRA:

RADIO SNRs (Reynolds & Ellison 92)
AND SED FITTING OF SN1006 AND RCW86 (Vink 12)

B-FIELD LARGELY AMPLIFIED

EVIDENCE OF MFA <u>RELATIVISTIC ELECTRONS IN SNRs</u> (Ballet 06, Vink 12)

VIRTUALLY ALL YOUNG REMNANTS SHOW X-RAY SYNCHROTRON FILAMENTS

LOSS LENGTH
$$\Delta x = \sqrt{D\tau_{
m sync}} = 0.04 B_{100}^{-3/2} pc$$

INDIRECT EVIDENCE FOR EFFICIENT CR ACCELERATION

8

CAVEATS:

- DAMPING MAY BREAK FIRST IMPLICATION
- OTHER SOURCES OF AMPLIFIED FIELDS MAY BREAK SECOND
- AMPLIFIED FIELDS ARE NOT BOUND TO GUARANTEE EFFICIENT SCATTERING AND REACHING HIGH ENERGIES

DAMPING

RECENT STUDIES ON THE PROPERTIES OF X-RAY FILAMENTS (Rettig & Pohl 12, Ressler et al 14, Tran et al 15) SHOW THAT EVEN IN THE CASES WHEN DAMPING FITS THE RESULTS BETTER THAN LOSSES LARGE FIELDS ARE REQUIRED

MANY MECHANISMS OF B-FIELD AMPLIFICATION

NON RESONANT STREAMING INSTABILITY

DO WE EXPECT TO SEE PEVATRONS IN THE SKY?

HYBRID SIMULATIONS' RESULTS

TURBULENCE IN THE UPSTREAM SEEDED BY THE CURRENT CARRIED BY THE ESCAPING PARTICLES

IF SHOCK MACH NUMBER LARGE ENOUGH, FASTEST INSTABILITY IS BELL'S -4 -3.5

GROWING MODES ARE SMALL SCALE, BUT QUICKLY GROW TO LARGER SCALES.

CLOSE TO SHOCK PARTICLES START <u>BOHM DIFFUSION IN</u> <u>AMPLIFIED FIELD</u> AND A PRECURSOR IS FORMED

SATURATION AT $(\delta B/B_0)^2 \approx M_A$

ACCELERATION EFFICIENCY 10-15%

NO CONCAVE SPECTRA SO FAR

MAXIMUM ENERGY WITH BELL'S MFA

- MAGNETIC FIELD IS AMPLIFIED BY THE CURRENT OF ESCAPING PARTICLES
- GROWTH RATE IS PROPORTIONAL TO J_{CR} WHICH DEPENDS ON SPECTRUM AT THE SHOCK, MAXIMUM ENERGY AND SHOCK VELOCITY

SELF-REGULATING ACCELERATION AND ESCAPE

 THE MAXIMUM ENERGY ALWAYS DECREASE WITH TIME (also check poster by Kantzas)

THE RELEVANT VALUE IS THAT AT THE BEGINNING OF SEDOV 15
 PHASE DUE TO WEIGHING WITH PROCESSED MATERIAL

$$\begin{array}{l} \textbf{MAXIMUM PARTICLE ENERGY}\\ \textbf{(e}^{-2} \text{ SPECTRUM)} \\ \textbf{TYPE I} & \textbf{TYPE II} \\ m=0, \ k=7 & m=2, \ k=9 \\ E_M \approx \frac{e}{\mathcal{N}c} \xi_{\mathrm{CR}} v_0^2 \sqrt{4\pi\rho R_0^2} & E_M \approx \frac{2e}{\mathcal{N}c} \xi_{\mathrm{CR}} v_0^2 \sqrt{4\pi\rho R_0^2} \\ \textbf{TYPE I} \\ E_M \approx 130 \left(\frac{\xi_{\mathrm{CR}}}{0.1}\right) \left(\frac{M_{\mathrm{ej}}}{M_{\odot}}\right)^{-\frac{2}{3}} \left(\frac{E_{\mathrm{SN}}}{10^{51}\mathrm{erg}}\right) \left(\frac{n_{\mathrm{ISM}}}{\mathrm{cm}^{-3}}\right)^{\frac{1}{6}} \mathrm{TeV} \\ \textbf{TYPE II} \end{array}$$

$$E_M \approx 1 \left(\frac{\xi_{\rm CR}}{0.1}\right) \left(\frac{M_{\rm ej}}{M_{\odot}}\right)^{-1} \left(\frac{E_{\rm SN}}{10^{51} {\rm erg}}\right) \left(\frac{\dot{M}}{10^{-5} M_{\odot} {\rm yr}^{-1}}\right)^{\frac{1}{2}} \left(\frac{v_w}{10 {\rm km/s}}\right)^{-\frac{1}{2}} {\rm PeV}$$

CHANGING THE EXPLOSION ENERGY

$$\begin{array}{ll} \textbf{RELEASED SPECTRUM VS}\\ \textbf{SOURCE SPECTRUM}\\ N_{esc}(E)dE = \frac{J_{CR}}{e}4\pi R^2 dt\\ \hline \textbf{Result depends on density} & \rho_{ej} \propto R^{-k}\\ \textbf{PROFILE}\\ \textbf{OF EJECTA AND AMBIENT MEDIUM} & \rho_{amb} \propto R^{-m}\\ \hline \textbf{TYPE I} & \textbf{TYPE II}\\ m = 0, \ k = 7 & m = 2, \ k = 9\\ N_{esc}(E) \propto \begin{cases} E^{-(5+4\epsilon)} & \text{ED phase;}\\ E^{-(2+\epsilon)} & \text{ST phase;} \end{cases} & N_{esc}(E) \propto \begin{cases} E^{-(4+3\epsilon)} & \text{ED phase;}\\ E^{-(2+\epsilon)} & \text{ST phase;} \end{cases}\\ \textbf{WITH} & \epsilon = \begin{cases} 0 & \beta \leq 0\\ \beta & \beta > 0 \end{cases} & \textbf{AND ASSUMING:} \ f_s(E) \propto E^{-(2+\beta)} \end{cases}$$

RELEASED SPECTRUM VS SOURCE SPECTRUM

TYPE ITYPE II $N_{esc}(E) \propto \begin{cases} E^{-(5+4\epsilon)} & \text{ED phase;} \\ E^{-(2+\epsilon)} & \text{ST phase;} \end{cases}$ $N_{esc}(E) \propto \begin{cases} E^{-(4+3\epsilon)} & \text{ED phase;} \\ E^{-(2+\epsilon)} & \text{ST phase;} \end{cases}$ $\epsilon = \begin{cases} 0 & \beta \leq 0 \\ \beta & \beta > 0 \end{cases}$

STEEP POWER LAW AT HIGH ENERGY DUE TO PARTICLES ACCELERATED IN THE EJECTA DOMINATED PHASE

IN SEDOV TAYLOR PHASE THE RELEASED SPECTRUM IS

- E⁻² IF N_{SOURCE} ≈E⁻² OR FLATTER
- SAME AS N_{SOURCE} IF THIS IS STEEPER

WHAT CR SPECTRA SHOULD SNRS RELEASE?

CR INJECTION SPECTRUM

SPECTRA FROM DISCRETE SOURCES

MAXIMUM ENERGY AND SOURCE SPECTRUM

- EXTREME EVENTS (E_{sN}>10⁵²erg)
- EXTREME ACCELERATION EFFICIENCY (ξ_{cr}>30%)

$E_{\rm MAX} \propto \xi_{\rm CR} E_{\rm SN}$

$Flux \propto \xi_{\rm CR} E_{\rm SN} \mathcal{R}$

ABOVE THE MAXIMUM ENERGY THE SPECTRUM SHOULD SHOW A STEEPER POWER-LAW RATHER THAN A CUT-OFF, DUE TO PARTICLES ACCELERATED DURING EJECTA DOMINATED PHASE

NEWS FROM THE GAMMA-RAY SKY

RELATIVISTIC PROTONS IN SNRS

(AGILE: Giuliani+ 11, Cardillo+ 14; FERMI: Abdo+ 10, Ackermann+ 11)

BROAD BAND SED AND MORPHOLOGY WELL REPRODUCED ASSUMING:

- E_{MAX} ≈500 TEV
- ξ_{CR} ≈10%
- STEEP SPECTRUM: E-2.3

DISCREPANCY?

STEEP SOURCE SPECTRA

POSSIBLE EXPLANATION: RESULT OF MAGNETIC FIELD AMPLIFICATION (Zirakashvili & Ptuskin 08, Caprioli 11)

•CAVEAT: DEPENDS ON DETAILS OF THE TURBULENCE PROPERTIES •ALSO OTHER WAYS...

•BROAD BALMER LINE \leftarrow DOWNSTREAM T_{ION} •NARROW BALMER LINE \leftarrow UPSTREAM T_{ION} •EFFICIENT CR ACCELERATION \Rightarrow LOWER DOWNSTREAM T_{ION} \rightarrow NARROWER BROAD LINE

IN MODIFIED SHOCKS CE IN PRECURSOR ●EFFICIENT CR ACCELERATION ⇒ HIGHER UPSTREAM T_{ION} →BROADER NARROW LINE ●IN RCW86 BOTH EFFECTS OBSERVED (Sollerman et al 03, Helder et al. 09³²

SUMMARY

- WE LIKELY HAVE NOT SEEN CR ACCELERATION IN SNRs YET
- ACCUMULATING EVIDENCE THAT CR SOURCES ACCELERATE PARTICLES WITH STEEP SPECTRA
- · NOT CLER HOW SNRS CAN REACH THE KNEE ...
- · CONFLICTING DATA ON WHERE THE KNEE IS
- NUMERICAL EXPERIMENTS FINALLY WITHIN REACH TO PROBE OUR THEORIES ON PARTICLE ACCELERATION
- THE GENERAL PICTURE OF NON-LINEAR SHOCK ACCELERATION AND A NUMBER OF SIMPLIFICATIONS PROVEN TO BE OK
- NEW PATHS FOR FINDING EVIDENCE OF CR ACCELERATION ARE JUST BEGINNING TO BE EXPLORED