Hα imaging spectroscopy of Balmer- dominated shocks in Tycho's SNR

Sladjana Knežević

Weizmann Institute of Science, Israel

Collaborators: Ronald Laesker (Tuorla, Finland) Glenn van de Ven and Coryn Bailer-Jones (MPIA, Germany) Joan Font Serra and John Beckman (IAC, Spain) John Raymond (CfA, USA) Parviz Ghavamian (Towson University, USA) Giovanni Morlino (INAF Florence, Italy)

Balmer-dominated shocks

• Collisionless, non-radiative shocks with strong two-component hydrogen lines.

• Studying physical conditions in the shock: shock velocity and electron-to-proton equilibration ratio.

Precursors

> Wn = 30–50 km/s → pre-shock temperatures 20 000-60 000 K → no neutral H at this temperature → no Hα emission…but we still see it!

> A narrow line broadened beyond 20 km/s gives direct evidence of the nonthermal particle presence in the shock precursor (Morlino et al. 2013).

CR precursor: Wn=Wn(p_{max} , η_{th} ,Vs, ϵ , β_{down} , β_{up})

Broad-neutral precursor: Wi=Wi(Vs, f_n , ε , η_{th} , β_{down} , β_{up})

Previous narrow Hα observations in NE Tycho

Optical shocks in the NE rim of Tycho: Narrow Hα line component

Mid-panel: ACAM camera on WHT; Hα narrow band imaging; FOV 4'x4', pixsize 0.125".

Right-panel: GHαFaS Fabry-Pérot interferometer; FOV 3.4'x3.4', pixsize 0.2'', spectral coverage 400 km/s, spectral resolution 8 km/s.

Resolving the narrow $H\alpha$ component only

Bkg model (dashed black) + Intrinsic model (dashed red)

We use MCMC to calculate posterior from data and prior.

Deviations from NL model – Bayes factor.

NL model posterior

Flux fractions in the continuum + line

Model flux

NLIL model

NLIL model posterior

73 spatial bins results

Results Summary

- a) Spatially resolved the entire projected NE filament for the first time while also spectrally resolving NL
- b) Single-line fit: width >> 20 km/s (~ 60km/s on average)
 → clear confirmation of CR precursor
- c) Need for additional (intermediate) component
 Wi≈100-300 km/s + fn ≈ 0.9 in NE rim Tycho
 → broad neutral pressures
 - \rightarrow broad-neutral precursor

THANK YOU FOR YOUR ATTENTION!

Balmer-dominated shocks

At shock velocities ~1000 km/s, three atomic reaction are comparably likely:

- 1) excitation
- 2) ionization

3) charge exchange/transfer: creates a secondary population of hydrogen atoms (broad neutrals) which encode information about the post-shock gas.

Additional figures: NL model posterior

Additional figures: NLIL model posterior

