

Dublin Institute for Advanced Studies School of Cosmic Physics

Magnetic field estimates from the synchrotron X-ray shell of 30 Dor C, the first TeV superbubble

Patrick Kavanagh

Jacco Vink (Anton Pannekoek Institute/GRAPPA) Manami Sasaki (IAAT) Pierre Maggi (CEA Saclay) Frank Haberl (MPE) Miroslav Filipovic, Luke Bozzetto (UWS) Stefan Ohm (DESY-Zeuthen)

Aim: determine dominant TeV emission mechanism using B-fields from X-ray synchrotron region widths

- 30 Dor C
 - X-ray studies
 - TeV γ -ray detection by *H.E.S.S.*
- Analysis
 - X-ray observations
 - Synchrotron profile fitting
- Results
 - B-field estimates
 - Implications for TeV mechanism
- Future work

Dennerl et al. (2001)

Press release: http://sci.esa.int/xmm-newton/13202-30-doradus-in-Imc/

X-ray studies

- Chandra- XMM-Newton- Suzaku- XMM-NewtonBamba et al., 2004Smith & Wang, 2004Yamaguchi et al, 2009Kavanagh et al., 2015

Characteristics

- Thermal emission with enhanced α -group elements
- Nearby SNR
- X-ray synchrotron shell

(pn = 420 ks; MOS1 = 556 ks; MOS2 = 614

Synchrotron shell

- large (d~100 pc!) non-thermal shell (Bamba et al., 2004)
- X-ray synchrotron in origin (Yamaguchi et al., 2009)
- requires shock speed ≥ 3000 km s⁻¹

H.E.S.S. detection - first TeV superbubble

H.E.S.S. Collaboration, 2015

Dominant TeV emission mechanism?

Leptonic (IC):

- same particles responsible for synchrotron shell
- requires high shock velocities, low interior densities (~10⁻⁴ cm⁻³)

- downstream magnetic field ~ 15 μ G

Hadronic (pp):

requires high interior densities
(> 20 cm⁻³)

- high (amplified) magnetic field

Analysis

X-ray mosaic

XMM-Newton Extended Source Analysis Software (ESAS)

- reprocessed all available data
- constructed mosaic
- particle background subtracted
- exposure corrected
- produced error image

Define and extract radial profiles

2-7 keV binned mosaic

<u>Analysis</u>

Profile fitting

Assume model:

 $\epsilon(r) \propto exp(-(r-R)/l_{obs})$

Assume spherical symmetry: (Abel transform)

$$\sigma(r_p) = 2 \int_{r_p}^{R} \frac{\epsilon(r)r}{(r^2 - r_p^2)^{1/2}} dr$$

Convolve with *XMM-Newton* PSF:

- generated using SAS task psfgen

B-field estimate: Helder et al., 2012

$$B_2 \approx 26 \left(\frac{l_{\text{adv}}}{1.0 \times 10^{18} \text{ cm}} \right)^{-2/3} \eta_g^{1/3} \left(r_4 - \frac{1}{4} \right)^{-1/3} \mu \text{G}$$
$$l_{\text{obs}} \approx \sqrt{2} l_{\text{adv}}$$

Results

Results

Profile fits

Results

Profile fits

Relax spherical symmetry

Estimated B-fields

Region	B2	C2	D	B/C
B-field (µG)	33 (6-49)	3 (2-8)	41 (7-66)	~3?

Dominant TeV emission mechanism?

- Hadronic:
- high (amplified) magnetic fields
- high interior density
- Leptonic:
- average magnetic field ~ 15 μ G
- low-interior density

TeV emission likely dominated by leptonic γ -rays

Future

Chandra

Observation:

- 90 ks ACIS-S
- scheduled Oct 2016

Goals:

- resolve brightest synchrotron region
- refined/complete B-field estimates
- variation in B-field
- more complex profile models?
- (anti)correlation with thermal X-rays
- multi-wavelength comparison

Kavanagh et al., Chandra Cycle 17

- Low downstream B-field in 30 Dor C synchrotron shell
- Consistent with leptonic γ -ray dominated TeV emission
- More detailed analysis with Chandra to follow