A Stochastic Acceleration Model of Radio Emission Shuta Tanaka (Konan Univ., Japan) from Pulsar Wind Nebulae with Katsuaki Asano (Tokyo Univ., Japan) ABSTRACT

The Pulsar Wind Nebulae (PWNe) spectra are described by non-thermal emissions from e[±]s whose the energy distribution is not reproduced by standard shock particle acceleration and cooling processes. For example, a broken power-law energy distribution is adopted, groundlessly. Here, we study a stochastic acceleration for the radio emitting particles by a turbulence inside PWNe. We upgrade our one-zone spectral evolution model and apply to the Crab Nebula. We consider the both continuous and impulsive injections of particles to the acceleration process. Time dependent the particle injection and/or the momentum diffusion coefficient are required to reproduce the radio observations.

Spectral indices at radio (α_r) & X-rays (α_x) is different. <= not explained by a

III. One-zone Model Fokker-Planck equation $\frac{\partial}{\partial t}N(\gamma,t) + \frac{\partial}{\partial \gamma} \left[\left(\dot{\gamma}_{\text{cool}}(\gamma,t) - \gamma^2 D_{\gamma\gamma}(\gamma,t) \frac{\partial}{\partial \gamma} \frac{1}{\gamma^2} \right) N(\gamma,t) \right] = Q_{\text{PSR}}(\gamma,t) + Q_{\text{ext}}(t)$

is difficult

10⁻¹³ 10¹⁰ 10¹⁵ May not be the same origin, relic particles?

II. Turbulences in PWNe

Interaction with SN ejecta & anisotropic

10²⁰

v[Hz]

10²⁵

ST&Takahara10

$$\begin{aligned} \gamma_{\rm cool}(\gamma, t) &= \gamma_{\rm ad}(\gamma, t) + \gamma_{\rm syn}(\gamma, t) + \gamma_{\rm IC}(\gamma, t) \\ \frac{4\pi}{3} R^3(t) \frac{B^2(t)}{8\pi} &= \eta_{\rm B} \int_0^t L_{\rm spin}(t') dt' \end{aligned}$$

 $Q_{\rm PSR}(\gamma, t) \propto \gamma^{-p}, \ (\gamma_{\rm min} \leq \gamma \leq \gamma_{\rm max})$ $\int d\gamma Q_{\rm PSR}(\gamma, t) \gamma m_{\rm e} c^2 d\gamma = (1 - \eta) L_{\rm spin}(t)$

Single PL injection from PSR for X-ray emitting particles

Same as

ST&Takahara10

Momentum diffusion coefficient q = 5/3 (Kolmogorov) or 2 (hard-sphere approx.) t_{accel}: parameter of turbulence t_{decay}: parameter of turbulence

$$D_{\gamma\gamma}(\gamma,t) \equiv rac{\gamma_{\min}^2}{2t_{
m accel}} \left(rac{\gamma}{\gamma_{
m min}}
ight)^q \exp\left(-rac{t}{t_{
m decay}}
ight)$$

VI. Discussion & Conclusions

Model of stochastic acceleration origin for radio emitting particles is demonstrated!

- Impulsive: decaying turbulence + hard-sphere approx.
- Continuous: Increasing injection + Kolmogorov spectrum
- Stochastic acceleration (turbulence) needs to be energetically significant amount of spin-down power.

6-11, Jun. 2016, Supernova Remnants: An Odyssey in Space After Steller Death @ Chania, Crete, Greece