

On Distance and Age of Pulsar Wind Nebula 3C58

Dr. Roland Kothes

Dominion Radio Astrophysical Observatory Herzberg Programs in Astronomy and Astrophysics National Research Council Canada

Supernova Remnants: An Odyssey in Space, Chania, June 7, 2016

Overview

Mainly based on: Kothes R., 2013, A&A 560, 18

Slane et al. 2004

Distance and Environment

Roberts et al. 1993

Distance and Environment

Roberts et al. 1993

Wallace et al. 1994

Distance and Environment

Property/Observation Age Reference

1181 A.D. Guest Star

Stephenson & Green, 2002

Historical Records

Property/Observation Age Reference

1181 A.D. Guest Star 835 yr Stephenson & Green, 2002 PWN M_{sw} and Energy Chevalier 2004

PWN Evolution and Energy

$$\label{eq:Msw} \begin{split} M_{sw} \sim R_{PWN}^{-2} \times t^3 = 0.0054\text{-}0.012 \; \text{M}_\odot \\ \text{(predicted, Chevalier, 2004)} \end{split}$$

$$\label{eq:Msw} \begin{split} M_{sw} \sim R_{PWN}^{2.5} &= 0.1 \ \text{M}_{\odot} \\ \text{(observed, Bocchino et al., 2001)} \end{split}$$

Minimum Energy required for observed synchrotron emission: $E_{min}\approx 1.0\times 10^{48}~\text{erg}$

Total energy lost by the pulsar: $E_{tot}\approx 0.84\times 10^{48}~\text{erg}$

Property/Observation Age Reference

Optical knots expansion study

Fesen et al., (2008)

Property/Observation Age Reference

1181 A.D. Guest Star PWN M_{sw} and Energy Optical Knots Study Radio Expansion

835 yr $\sim 2500~{
m yr}$ $\sim 3000~{
m yr}$

Stephenson & Green, 2002 Chevalier 2004 Fesen et al., 2008 Bietenholz et al., 2006

Property/Observation Age Reference

1181 A.D. Guest Star PWN M_{sw} and Energy Optical Knots Study Radio Expansion SN1181 Peak Brightness Pulsar Characteristics 835 yrStephenson & Green, 2002 ~ 2500 yrChevalier 2004 ~ 3000 yrFesen et al., 2008 ≤ 7000 yrBietenholz et al., 2006???Stephenson & Green, 2002???many

PWN 3C 58 - 16 / 28

129°

RAD

PR A O

3C 58 in the CGPS

3C 58 in the CGPS

3C 58 in the CGPS

New Distance and Environment

New Distance of 3C 58

New Distance of 3C 58

Distance = 2.0 kpc

Xu et al., 2006

Hachisuka et al., 2006

Property/Observation

Age

Reference

1181 A.D. Guest Star PWN M_{sw} and Energy Optical Knots Study Radio Expansion Radio Flux Evolution SN1181 Peak Brightness Pulsar Characteristics 835 yrStephenson & Green, 2002 ~ 2500 yrChevalier 2004 ~ 3000 yrFesen et al., 2008 ≤ 7000 yrBietenholz et al., 2006 ≤ 850 yrGreen, 1987???Stephenson & Green, 2002???many

PWN Evolution and Energy

$$\label{eq:Msw} \begin{split} M_{sw} \sim R_{PWN}^{-2} \times t^3 = 0.0054\text{-}0.012 \; \text{M}_\odot \\ \text{(predicted, Chevalier, 2004)} \end{split}$$

$$\label{eq:Msw} \begin{split} M_{sw} \sim R_{PWN}^{2.5} &= 0.1 \ \text{M}_{\odot} \\ \text{(observed, Bocchino et al., 2001)} \end{split}$$

Minimum Energy required for observed synchrotron emission: $E_{min}\approx 1.0\times 10^{48}~\text{erg}$

Total energy lost by the pulsar: $E_{tot}\approx 0.84\times 10^{48}~\text{erg}$

PWN Evolution and Energy

 $\frac{M_{sw}}{\sim} \sim R_{PWN}^{-2} \times t^3 = 0.014\text{-}0.028 \text{ M}_\odot$ (predicted, Chevalier, 2004)

$$\label{eq:Msw} \begin{split} M_{sw} \sim R_{PWN}^{2.5} &= 0.031 \ \text{M}_{\odot} \\ \text{(observed, Bocchino et al., 2001)} \end{split}$$

Minimum Energy required for observed synchrotron emission: $E_{min}\approx 0.4\times 10^{48}~\text{erg}$

Total energy lost by the pulsar: $E_{tot}\approx 0.84\times 10^{48}~\text{erg}$

Property/Observation

1181 A.D. Guest Star PWN M_{sw} and Energy Optical Knots Study Radio Expansion

SN1181 Peak Brightness Pulsar Characteristics 835 yr 860-1000 yr ~ 3000 yr ≤ 7000 yr ??? ???

Age

Reference

Stephenson & Green, 2002 r Chevalier 2004 Fesen et al., 2008 Bietenholz et al., 2006 Stephenson & Green, 2002 many

Optical Knots

PWN 3C 58 - 24 / 28

Property/Observation

Age

Reference

1181 A.D. Guest Star PWN M_{sw} and Energy Optical Knots Study Radio Expansion SN1181 Peak Brightness Pulsar Characteristics 835 yr 860-1000 yr 630-1600 yr ≤ 7000 yr ??? ???

Stephenson & Green, 2002 Chevalier 2004 Fesen et al., 2008 Bietenholz et al., 2006 Stephenson & Green, 2002 many

Radio Flux Evolution

Property/Observation

Age

Reference

1181 A.D. Guest Star PWN M_{sw} and Energy Optical Knots Study Radio Expansion Radio Flux Evolution SN1181 Peak Brightness Pulsar Characteristics 835 yr 860-1000 yr 630-1600 yr ≤ 7000 yr ≤ 850 yr ??? ???

Stephenson & Green, 2002 Chevalier 2004 Fesen et al., 2008 Bietenholz et al., 2006 Green, 1987 Stephenson & Green, 2002 many

Summary

PWN 3C 58
Pro and Contra 1181 A.D.
New Distance Determination
Impact of the new Distance
Summary

- New CGPS HI absorption and Emission data support the systemic velocity and the proposed location inside an HI cavity.
- A more reliable distance of 2.0 kpc to 3C 58 has been established.
- The new distance gives 3C 58 dimensions similar to the Crab Nebula, supporting a young age.
- A connection of the pulsar wind nebula 3C 58 with the historical supernova event of 1181 A.D. is strongly supported.

