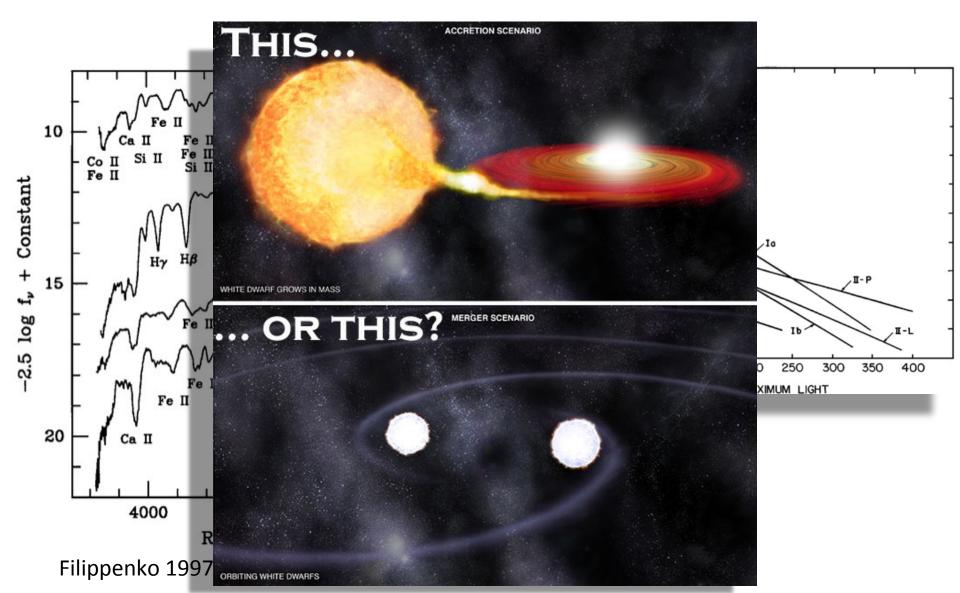
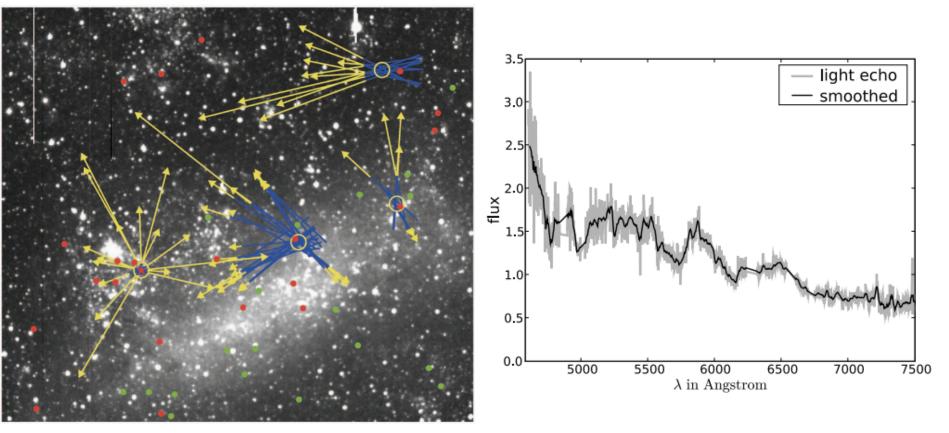

Reviving the Single Degenerate Scenario for the la Supernova Event that Formed Remnant 0509-67.5

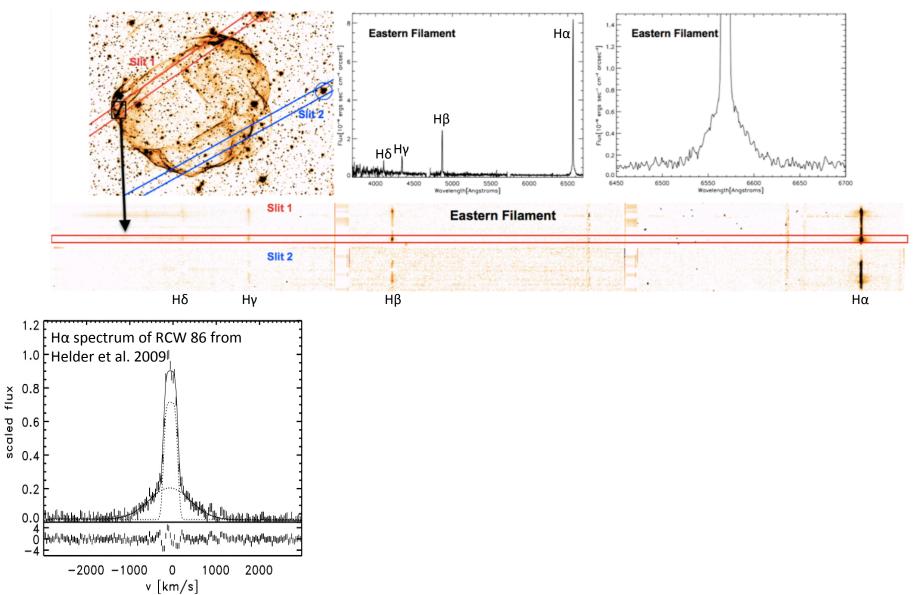
mage Credit-Hubble Heritage

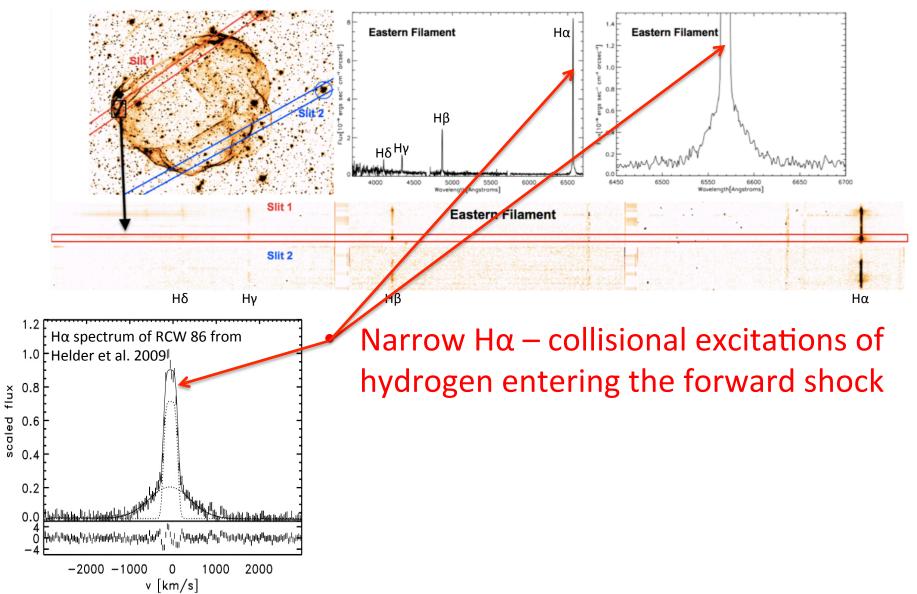


Luke Hovey: 6 June, 2016 Los Alamos National Laboratory

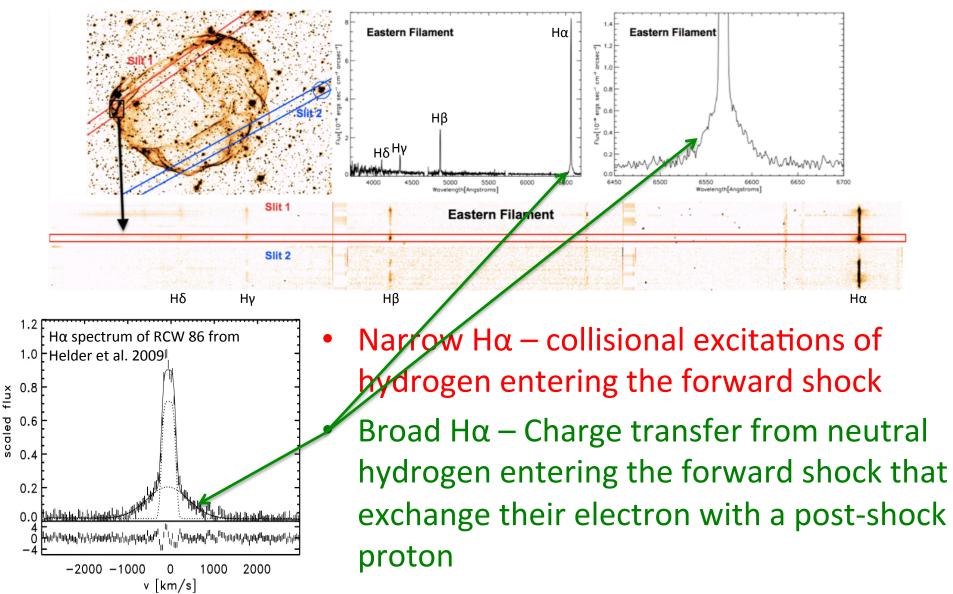

la Supernovae

la Supernovae

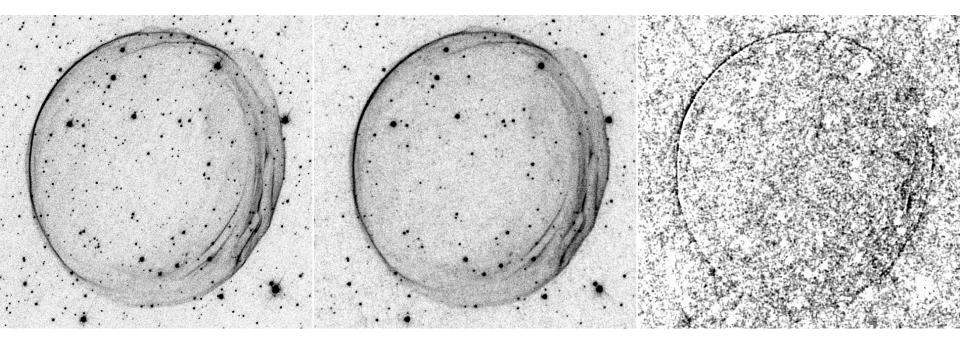

la Identification of 0509-67.5


Rest et al. 2005

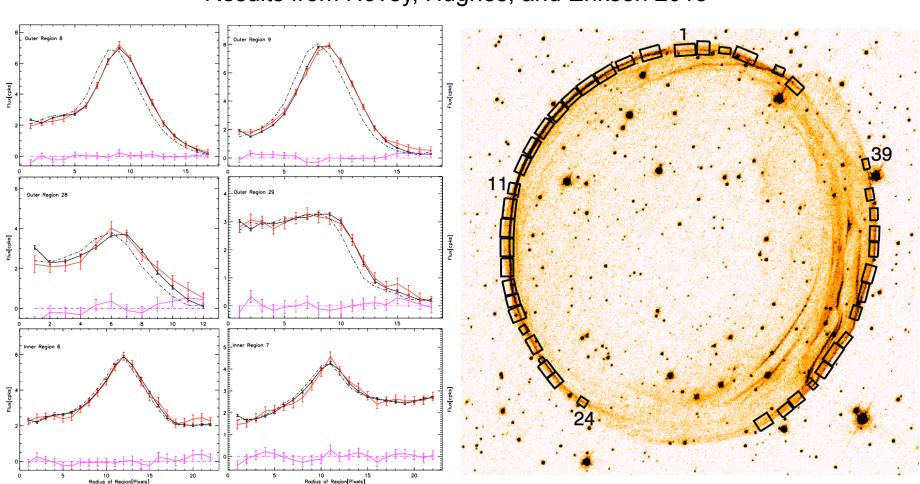
Rest et al. 2008


Balmer-dominated Shocks

Balmer-dominated Shocks

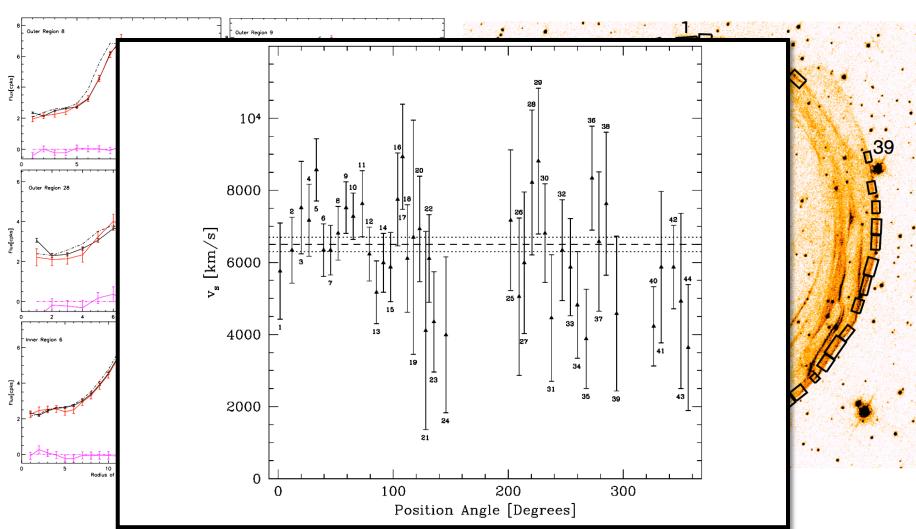


Balmer-dominated Shocks

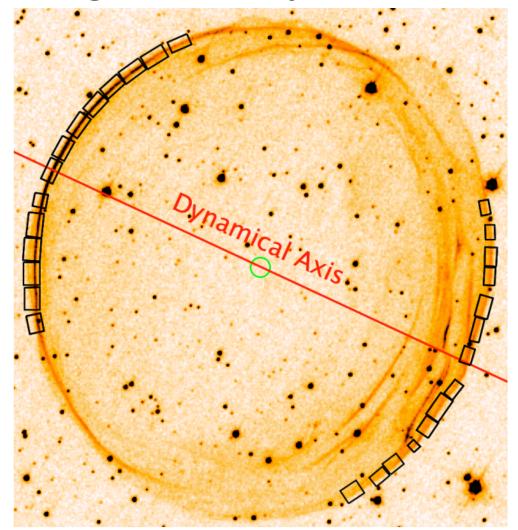


Measuring Global Shock Speed

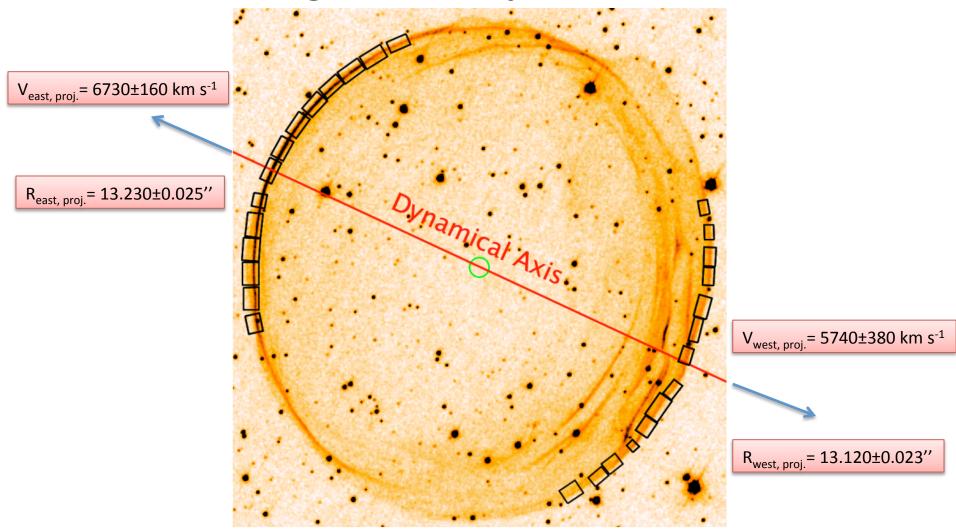
Results from Hovey, Hughes, and Eriksen 2015



Measuring Global Shock Speed


Results from Hovey, Hughes, and Eriksen 2015

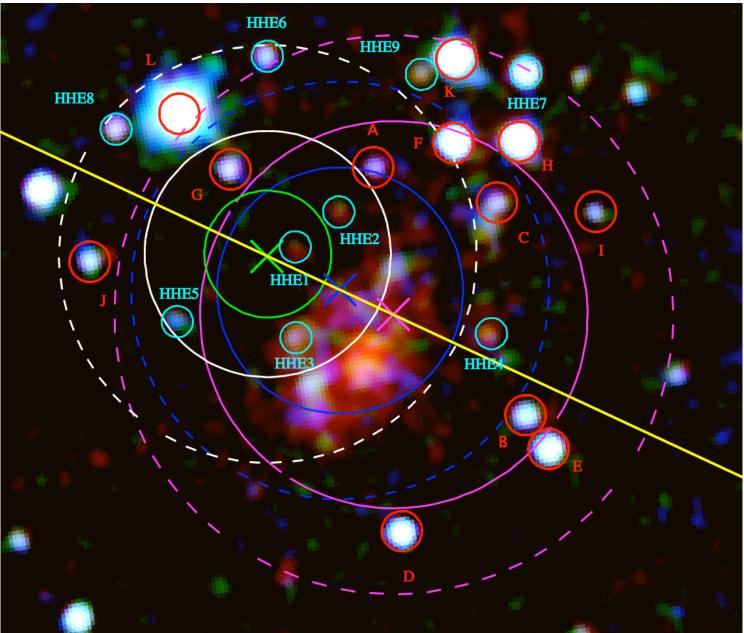
Measuring Global Shock Speed



Results from Hovey, Hughes, and Eriksen 2015

Searching for a Dynamical Offset

Searching for a Dynamical Offset


Projecting velocities and radii along our dynamical axis

Single Degenerate Model Redux

Varying Parameter	$E_{51},M_{ej}/M_{\odot}$	$ ho_{west}/ ho_{east}$	$\log_{10}\left({ ho_{west}}^{(1)} ight)$	$\log_{10}\left(ho_{east}{}^{(1)} ight)$	Shift	$\mathbf{t}_{min}[\text{years}]$
	1.0, 1.4	2.42	-24.32	-24.70	$0.790 \pm 0.350''$	294
$ ho_{ m west, \ east}$	1.2, 1.4	2.31	-24.19	-24.57	$0.790 \pm 0.350''$	288
	1.4, 1.4	2.31	-24.10	-24.46	$0.790\pm0.350^{\prime\prime}$	281
Varying Parameter	$\mathrm{M}_{ej}/\mathrm{M}_{\odot},\rho_{0}^{(1)}$	E_{west}/E_{east}	$E_{west}^{(2)}$	$E_{east}^{(2)}$	Shift	$\mathbf{t}_{min}[\text{years}]$
	1.4, 3.6	0.49	0.76	1.54	$1.350 \pm 0.600''$	290
$E_{west, east}$	1.4, 4.7	0.49	0.91	1.87	$1.370 \pm 0.603^{\prime\prime}$	283
	1.4, 6.0	0.48	1.06	2.20	$1.380\pm0.606^{\prime\prime}$	278

Note. — The west and east subscripts refer to east or west along our dynamical axis. (1) - Density in units of 10^{-25} g cm⁻³. (2) - Energy in units of 10^{51} ergs.

Single Degenerate Model Redux

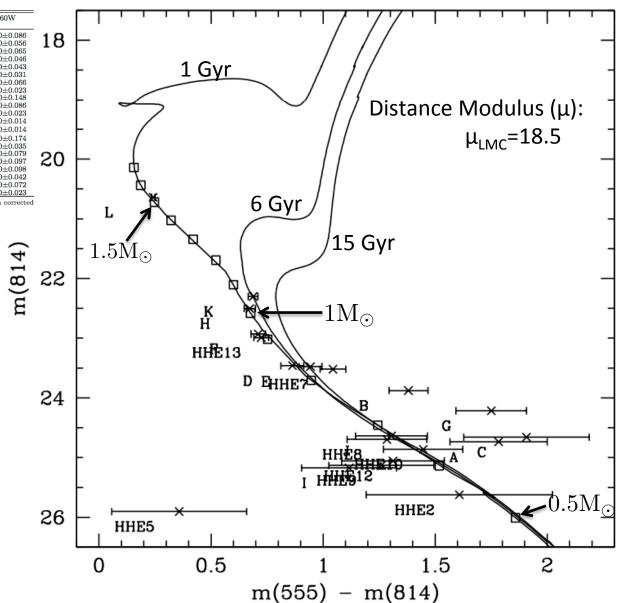
Possible Progenitor Companions

PHOTOMETRY OF PROGENITOR COMPANION CANDIDATES

Star	F475W	F555W	F814W	F110W	F160W
Α	$27.250 {\pm} 0.246$	$27.360 {\pm} 0.368$	$24.920 {\pm} 0.093$	$23.940 {\pm} 0.112$	$23.140 {\pm} 0.086$
в	$25.430 {\pm} 0.053$	25.190 ± 0.058	23.900 ± 0.038	$23.160 {\pm} 0.056$	22.710 ± 0.056
С	26.610 ± 0.135	26.370 ± 0.150	24.630 ± 0.069	23.430 ± 0.072	22.850 ± 0.065
D	24.670 ± 0.031	24.410 ± 0.033	23.430 ± 0.026	22.820 ± 0.044	22.400 ± 0.046
\mathbf{E}	24.540 ± 0.029	24.360 ± 0.032	23.470 ± 0.027	22.810 ± 0.042	22.380 ± 0.043
F	23.930 ± 0.020	23.650 ± 0.021	22.850 ± 0.016	22.280 ± 0.029	21.870 ± 0.031
G	26.200 ± 0.098	25.890 ± 0.100	24.260 ± 0.052	23.590 ± 0.086	22.790 ± 0.066
H	23.420 ± 0.015	23.230 ± 0.016	22.400 ± 0.012	21.820 ± 0.021	21.450 ± 0.023
I	27.720 ± 0.370	27.070 ± 0.282	25.270 ± 0.116	24.460 ± 0.177	23.830 ± 0.148
J	26.360 ± 0.108	26.070 ± 0.114	24.810 ± 0.074	23.790 ± 0.099	23.120 ± 0.086
K	23.120 ± 0.012	22.910 ± 0.014	22.220 ± 0.011	21.660 ± 0.019	21.390 ± 0.023
\mathbf{L}	21.030 ± 0.004	20.920 ± 0.005	20.510 ± 0.004	20.180 ± 0.009	20.030 ± 0.014
HHE 1	$\geq 27.970^{1}$	$\geq 27.590^{1}$	26.200 ± 0.284	24.650 ± 0.209	20.120 ± 0.014
HHE 2	$\geq 27.920^{1}$	27.870 ± 0.572	25.970 ± 0.236	24.470 ± 0.180	23.950 ± 0.174
HHE 3	27.200 ± 0.216	26.410 ± 0.150	24.450 ± 0.056	22.140 ± 0.025	22.080 ± 0.035
HHE 4	27.980 ± 0.452	27.380 ± 0.361	25.120 ± 0.107	23.710 ± 0.089	23.140 ± 0.079
HHE 5	27.340 ± 0.255	26.620 ± 0.184	26.900 ± 0.551	24.580 ± 0.196	23.280 ± 0.097
HHE 6	26.490 ± 0.124	26.460 ± 0.163	24.660 ± 0.066	23.720 ± 0.098	23.170 ± 0.098
HHE 7	24.710 ± 0.032	24.510 ± 0.035	23.480 ± 0.025	22.900 ± 0.047	22.300 ± 0.042
HHE 8	26.280 ± 0.099	25.960 ± 0.102	24.540 ± 0.056	23.480 ± 0.080	$22.840 {\pm} 0.072$
HHE 9	27.750 ± 0.375	26.510 ± 0.170	25.120 ± 0.101	21.660 ± 0.019	21.390 ± 0.023

NOTE. — All magnitudes reported with reference to Vega in each filter. These have not been corrected for extinction.

Detection less than 3σ above background noise.


Possible Progenitor Companions

PHOTOMETRY OF PROGENITOR COMPANION CANDIDATES

Star	F475W	F555W	F814W	F110W	F160W	
А	$27.250 {\pm} 0.246$	$27.360 {\pm} 0.368$	$24.920{\pm}0.093$	$23.940 {\pm} 0.112$	$23.140 {\pm} 0.086$	1
в	$25.430 {\pm} 0.053$	25.190 ± 0.058	23.900 ± 0.038	23.160 ± 0.056	22.710 ± 0.056	_ 1
С	26.610 ± 0.135	26.370 ± 0.150	24.630 ± 0.069	23.430 ± 0.072	22.850 ± 0.065	
D	24.670 ± 0.031	$24.410 {\pm} 0.033$	23.430 ± 0.026	22.820 ± 0.044	22.400 ± 0.046	
E	24.540 ± 0.029	24.360 ± 0.032	23.470 ± 0.027	22.810 ± 0.042	22.380 ± 0.043	
F	23.930 ± 0.020	23.650 ± 0.021	22.850 ± 0.016	22.280 ± 0.029	21.870 ± 0.031	
G	26.200 ± 0.098	25.890 ± 0.100	24.260 ± 0.052	23.590 ± 0.086	22.790 ± 0.066	
H	23.420 ± 0.015	23.230 ± 0.016	22.400 ± 0.012	21.820 ± 0.021	21.450 ± 0.023	
I	27.720 ± 0.370	27.070 ± 0.282	25.270 ± 0.116	24.460 ± 0.177	$23.830 {\pm} 0.148$	
J	26.360 ± 0.108	26.070 ± 0.114	24.810 ± 0.074	23.790 ± 0.099	23.120 ± 0.086	
K	23.120 ± 0.012	22.910 ± 0.014	22.220 ± 0.011	21.660 ± 0.019	21.390 ± 0.023	
L	21.030 ± 0.004	20.920 ± 0.005	20.510 ± 0.004	20.180 ± 0.009	20.030 ± 0.014	
HHE 1	$\geq 27.970^{1}$	$\geq 27.590^{1}$	26.200 ± 0.284	24.650 ± 0.209	20.120 ± 0.014	
HHE 2	$\geq 27.920^{1}$	27.870 ± 0.572	25.970 ± 0.236	24.470 ± 0.180	23.950 ± 0.174	
HHE 3	27.200 ± 0.216	26.410 ± 0.150	24.450 ± 0.056	22.140 ± 0.025	22.080 ± 0.035	
HHE 4	27.980 ± 0.452	27.380 ± 0.361	25.120 ± 0.107	23.710 ± 0.089	23.140 ± 0.079	c.
HHE 5	$27.340 {\pm} 0.255$	26.620 ± 0.184	26.900 ± 0.551	24.580 ± 0.196	23.280 ± 0.097	~
HHE 6	26.490 ± 0.124	26.460 ± 0.163	24.660 ± 0.066	23.720 ± 0.098	23.170 ± 0.098	
HHE 7	$24.710 {\pm} 0.032$	$24.510 {\pm} 0.035$	$23.480 {\pm} 0.025$	22.900 ± 0.047	22.300 ± 0.042	
HHE 8	26.280 ± 0.099	25.960 ± 0.102	24.540 ± 0.056	23.480 ± 0.080	22.840 ± 0.072	
HHE 9	27.750 ± 0.375	26.510 ± 0.170	25.120 ± 0.101	21.660 ± 0.019	21.390 ± 0.023	
NOTE	All magnitudes re-	ported with referen	ce to Vega in each	filter. These have	not been corrected	

NOTE. — All magnitudes reported with reference to Vega in each filter. These have *not* been corrected for extinction.

(1) Detection less than 3σ above background no

Conclusions

- Using hydrodynamic simulations and proper motion measurements we constrain our search radius and find 21 potential progenitor candidates
- Fitting isochrones to our photometry of these candidates, we find masses in the range of 0.5-1.5 M_{\odot} for these stars
- We <u>cannot</u> rule out a SD progenitor system for SNR 0509-67.5!