Type Ia SNR N103B: structure of the remnant and properties of the progenitor

Chuan-Jui Li, You-Hua Chu Institute of Astronomy and Astrophysics Academia Sinica, Taiwan National Taiwan University

Outline

- Environment and physical structure
- Spatiokinematically differentiate SNR and background components
- Proposed model and surviving companion candidates

Large Magellanic Cloud

C. Smith, S. Points, the MCELS Team and NOAO/AURA/NSF

Large Magellanic Cloud

C. Smith, S. Points, the MCELS Team and NOAO/AURA/NSF

MCELS

100 pc

CTIO 4m

100 pc

N103B

$4m H\alpha$ Image of N103B

HST H α Image of N103B

- Known distance
 ~50 kpc (LMC)
- Young ~860 yr
 - light echo (Rest+2005)
- Type la
 - X-ray spec (Hughes+1995)
 - light echo (Rest+2005)

HST and Chandra images of N103B

Left: HST Hα image Right: HST Hα (R) + F475W (G) + Chandra X-ray (B)

Environment and Physical Structure

- 1. N103B is projected in the outskirt of the superbubble around the rich cluster NGC1850.
- 2. The H α shell is open to the east where X-ray and radio emission extends further out (Lewis et al 2003).
- 3. Four prominent groups of knots
 - rms electron densities up to 2250 ± 300 cm⁻³
 - electron densities ~ 5300 cm⁻³ ([S II] 6716/6731)
 - High-density knots => circumstellar medium.

Outline

- Environment and physical structure
- Spatiokinematically differentiate SNR and background components
- Proposed model and surviving companion candidates

CTIO 4m long-slit echelle spectra

Ηα

[N II]

Large 25 pc Expanding Shell

Balmer shell: Narrow component with Broad component on receding side

Taken with SOAR 4m Goodman Spectrograph

Spatiokinematically Differentiate SNR and Background Components

- 1. Background interstellar gas
- Balmer-dominated SNR shell
 (core + broad wing on receding side)
- 3. Shocked nebular knots ($\Delta V \approx 500 \text{ km s}^{-1}$)
- 4. Large interstellar shell in background

Outline

- Environment and physical structure
- Spatiokinematically differentiate SNR and background components
- Proposed model and surviving companion candidates

Proposed Model

We need to explain:

- Apparently elliptical Balmer-dominated shell
- Dense knots
- The eastern diffuse X-ray and radio emission does not have optical counterparts

Proposed Model

(Hachisu et al. 2008)

Surviving Companion candidates

Comparison

Explosion center determined from radio and X-ray emissions. (Pagnotta & Schaefer 2015) Explosion center determined from the Balmer shell boundaries. (Li, Chu, et al. in preparation)

Surviving companion candidates

Li , Chu, et al. in preparation Pan, et al. 2014

Proposed Model and Surviving Companion Candidates

- Progenitor's proper motion to west => compression on the leading side and lowdensity in the trailing side.
- 2. Progenitor's ejecta => incomplete torus.
- 3. Explosion center ~ Balmer shell center
- 4. No obvious surviving companion candidates

Summary

- N103B consists of a filamentary Balmer-dominated shell and dense nebular knots.
- The Balmer shell results from **collisionless shocks**, indicating the N103B is *projected* near the ionized superbubble around NGC 1850.
- The prominent nebular knots consist of shocked circumstellar material ejected by the SN progenitor, thus indicating a SD origin of this Type Ia SN.
- We are using the HST photometric data to search for surviving companion candidates, nothing obvious. Model needs improvements.