Expanding molecular bubble surrounding Tycho's SNR evidence for a single-degenerate progenitor

Ping Zhou (Nanjing University)

Collaborators: Yang Chen, Zhi-Yu Zhang, Xiang-Dong Li, Samar Safi-Harb, Xin Zhou, Xiao Zhang

Table 12.3 The principal phases of the interstellar gas. (Courtesy of Dr. John Richer.)									
Names	Main constituent	Detected by	Volume of interstellar medium	Fraction by mass	N (cm ⁻³)	Temperature (K)			
'Molecular clouds'	H ₂ , CO CS, etc	Molecular lines. Dust emission	$\sim 0.5\%$	40%	≥ 10 ³	10–30			
'Diffuse clouds' 'H I clouds' 'Cold neutral medium'	H, C, O with some ions, C ⁺ , Ca ⁺	21-cm emission & absorption	5%	40%	1-10 ²	80			
'Intercloud medium'	H, H ⁺ , e ⁻ Ionisation fraction 10–20%	21-cm emission & absorption Hα emission	40%	20%	10-1-1	8000			
'Coronal gas'	H^+ , e^- Highly ionised species, O^{5+} , C^{+3} , etc	O vi Soft X-rays 0.1-2 keV	~50%	0.1%	~10-3	~10 ⁶			

SNRs associated with MCs

• Among the over 300 Galactic SNRs, over 70 are confirmed to be/ possibly associated with molecular clouds (MCs; Jiang et al. 2010; Jeong et al.

2012; Chen et al 2013). <u>http://astronomy.nju.edu.cn/~ygchen/others/bjiang/interSNR6.htm</u>

 The tool of MCs: distance, a probe of SNR acceleration of cosmicray protons, feedback to dense ISM, progenitor,...

Tycho— the only Type-Ia SNR may interact with MC

- Observational evidence of SNR-MC interaction (Jiang+2010)
 - 1720 MHz OH maser (n~10⁵ cm⁻³, T=50—125K)
 - 2. Broad molecular line profiles
 - 3. large high-to-low excitation line ratio (e.g. $T(^{12}CO 2-1)/T(^{12}CO 1-0)>1$)
 - 4. IR emission lines such as [FeII] and H_2
 - 5. IR colors
 - 6. Morphological agreement

density of the shocked gas from X-ray $<\sim 0.2$ cm⁻³ (Katsuda +2010)

¹²CO 1-0 Nobeyama, resolution~16" (Lee, Koo & Tatematsu 2004)

1 kinematic/physical evidence + morphological agreement -> SNR-MC interaction

Morphological agreement Red: WISE 22 μm green: ¹²CO 2-1 -64 — -60 km/s, IRAM 30m, 11" resolution blue: X-ray 4-6 keV

clumpy, molecular clump size<0.14 pc

Shocked and heated gas

systemic velocity: V_{LSR}~ -61 km/s

- distance: ~2.5 kpc
- expanding velocity:
 ~4.5 km/s
- mean radius: ~**3 pc**
- Molecular gas mass:
 ~220 M_{sun}

R.A.

0h24m56.9s

Decl.

64d14m38.9s

64d2m49.3s

molecular bubble in expansion

contour: X-ray 4-6 keV

position-velocity (PV) diagram of CO 2-1 along the cut with PA=287degree (equivalent to optical long-slit spectrum)

Origin of the expanding molecular bubble

swept-up by SNR Be

Because the SNR-MC interaction is not extensively

- wind blown bubble
 - possibility 1 (unrelated to Tycho): by the wind of a massive star on the line-of-sight
 - possibility 2 (related to Tycho): by the progenitor system of Tycho

The maximum size of a wind bubble by a massive star in the main-sequence stage (Chevalier 1999)

$$R_{\rm m} = 15.8 \left(\frac{\dot{M}}{10^{-7} \, M_{\odot} \, {\rm yr}^{-1}}\right)^{1/3} \left(\frac{\tau_{\rm ms}}{10^7 \, {\rm yr}}\right)^{1/3} \left(\frac{v_{\rm w}}{10^3 \, {\rm km \, s}^{-1}}\right)^{2/3} \\ \times \left(\frac{p/k}{10^5 \, {\rm cm}^{-3} \, {\rm K}}\right)^{-1/3} \, {\rm pc}$$

Need a massive star with M>10 Msun (B2 type or earlier) to create the 3 pc molecular bubble. Such a massive star is not seen in the field of Tycho!

We have used this relation to derive the progenitor masses of a dozen of SNRs in molecular bubbles (See Chen, Zhou & Chu 2013, Zhang+2015, ApJ, 799, 103)

Origin of the expanding molecular bubble

• wind blown bubble created by the progenitor system of Tycho

double-degenerate WD+WD

single-degenerate star+WD (disk wind)

The key difference between the two scenarios is present or absence of outflows from the binary system during the pre-SN evolution (Badenes+ 2007)

If accretion exceeds a critical value $(\dot{M}_{cr} \sim 10^{-6} M_{sun}/yr)$, the rest is blown off in the strong wind (>hundreds of km/s; Hachisu+ 1996).

The strong wind of the WD can evacuate a low density cavity and sweep up an expanding molecular bubble shell

ambient medium n~20 cm⁻³

The shock wave has just reached the molecular cavity wall

The wind parameters can match those expected in SD scenario

P4

1	arameters for the exemplified evolutionary paths of the bubble.							
	Path	$v_{\mathbf{w}}$	\dot{M}	t_t	t_{elapse}	$n_{ m b}(t_t)$	$n_{ m b}(t_{ m b}$	
		$(\mathrm{km}\ \mathrm{s}^{-1})$	$(10^{-6}M_{\odot})$	$(10^5 m yr)$	(10^5 yr)	(cm^{-3})	(cm^{-3})	
	P1	250	0.3	3.9	0	0.04	0.04	
	P2	250	1.0	1.3	1.6	0.09	0.02	
	$\mathbf{P3}$	280	1.0	1.1	1.7	0.10	0.03	

v_w—wind velocity

350

M-mass-loss rate

t_t-duration of the wind

telapse—elapse time between the wind stop and SN explosion

0.8

0.13

0.02

1.8

n_b—density of the wind bubble

1.0

We constrain the wind velocity to be no less than 250 km/s so that the modelled bubble is in the energy conservation stage.

In this state, the density of shocked wind has a flat density profile, consistent with the observation.

These wind parameters are expected in the single-degenerate scenario.

Importance of the MCs in the study of Tycho and its progenitor

14

- constitutes evidence for a singledegenerate progenitor of Tycho
- explains the rapid deceleration and deformed morphology of the NE shell
- distance: ~2.5 kpc (see Lee+ 2004)
- consistent the GeV and TeV emission detected in the east and north of Tycho
- raise the target density of hadronic collision, allow a lower energy conversion fraction of CRs (Zhang, X.+ 2013; of order 1%)

300

Position Angle (deg.)

350

Future monitoring study of Tycho

- Tycho is expanding towards nonuniform dense medium. Tycho-MC interaction is expected to be more and more extensive and strong.
- Molecular/IR monitoring observation will be important to study the young SNR in the nonuniform medium

Distribution of H₂ column density

Summary

- SNR Tycho is confined in the clumpy (< 11^{''}) molecular gas at VLSR ~ -64- -60 kms⁻¹.
- 2. We discover the expanding motion (~ 4.5 km s⁻¹) of the molecular bubble at VLSR = -61 kms⁻¹. The mass of the molecular bubble is ~ 220 M_{\odot}.
- 3. The most plausible origin for the expanding bubble is the fast outflow (with velocity hundreds of km/s) driven from the vicinity of the progenitor WD.
- 4. This is the first unambiguous detection of the expanding bubble driven by the progenitor of the Type-Ia SNR, which provides important and independent evidence to support that the progenitor of Tycho was a single-degenerate system.

More details: <u>http://arxiv.org/abs/1605.01284</u>