SVPERNOVA REMNANTS AN ODYSSEY IN SPACE AFTER STELLAR DEATH 6 - 11 JUNE 2016, CHANIA, CRETE, GREECE

**15** years of SN 1996al & CSM around massive stars

# S. Benetti

(2016 MNRAS 456, 3296)

Istituto Nazionale di AstroFisica Osservatorio Astronomico di Padova-Asiago

The spectacular evolution of Supernova 1996al over 15 yr: a low-energy explosion of a stripped massive star in a highly structured environment

S. Benetti,<sup>1\*</sup> N. N. Chugai,<sup>2</sup> V. P. Utrobin,<sup>3</sup> E. Cappellaro,<sup>1\*</sup> F. Patat,<sup>4</sup> A. Pastorello,<sup>1</sup> M. Turatto,<sup>1</sup> G. Cupani,<sup>5</sup> R. Neuhäuser,<sup>6</sup> N. Caldwell,<sup>7</sup> G. Pignata<sup>8,9</sup> and L. Tomasella<sup>1</sup>

# Introduction: Massive stars may show pre-explosion activity & weak explosions



# Why massive stars should end-up with dim explosions?



## SN 1996al progenitor star has been recovered!

#### Caldwell+ 1991



L<sub>Ha</sub>(precursor)~37.28 dex rate ionizing radiation ~10<sup>49</sup> photons s<sup>-1</sup>

star with bol lum log L/L $_{\odot}$  >~5.4 & R ~ 10R $_{\odot}$ 

(atmosphere models)

M<sub>ZAMS</sub> ~ 25 M<sub>☉</sub> -> lost most of external H mantle

#### SN 1996al: a linear supernova



#### No broad P-Cygni absorptions!



#### Light curve modelled with a weak explosion + interaction



#### Spectroscopic evolution over 15 years!





# HeI 5876Å photons coming from deep inside -> NaID



This tells that HeI 5876Å photons are emitted symmetrically deep inside the ejecta —> explosion is symmetric!!!



Crete 10 June 2016

11

# Equatorial disks are indeed seen around massive stars!

#### Gvaramadze+ 2015

#### MN18 and its bipolar nebula

 Table 7. Blue supergiants and cLBVs with hourglass-like circumstellar nebulae.

|                                                      | Sk-69°202                  | Sher 25                  | HD 168625              | [SBW2007] 1           | MN18    |
|------------------------------------------------------|----------------------------|--------------------------|------------------------|-----------------------|---------|
| Spectral type                                        | B3 I <sup>(1)</sup>        | B1.5 Iab <sup>(2)</sup>  | B6 Iap <sup>(3)</sup>  | B1 Iab <sup>(4)</sup> | B1 Ia   |
| $\log (L/L_{\odot})$                                 | $\approx 5^{(5)}$          | 5.8(6)                   | 5.0-5.4 <sup>(7)</sup> | 4.7 <sup>(8)</sup>    | 5.4     |
| $T_{\rm eff}$ (kK)                                   | 16 <sup>(5)</sup>          | 22 <sup>(6)</sup>        | 12-15 <sup>(7)</sup>   | 21 <sup>(8)</sup>     | 21      |
| $\dot{M}(10^{-7} \text{ M}_{\odot} \text{ yr}^{-1})$ | 1.5-3 <sup>(9, 10)</sup>   | 20 <sup>(6)</sup>        | 11 <sup>(7)</sup>      | 2-4(8)                | 4.2-6.8 |
| <i>r</i> (pc)                                        | $0.2^{(11)}$               | $0.2^{(12)}$             | 0.2 <sup>(7)</sup>     | 0.2 <sup>(13)</sup>   | 0.3     |
| $n_{\rm e}([{\rm SII}])~({\rm cm}^{-3})$             | ~10 000 <sup>(14, a)</sup> | 500-1800 <sup>(15)</sup> | ≈1000 <sup>(7)</sup>   | ≈500 <sup>(13)</sup>  | ≈600    |
| Mring                                                | 0.06 <sup>(16)</sup>       | 0.1 <sup>(15)</sup>      | 0.5 <sup>(7)</sup>     | $0.5 - 1.0^{(8)}$     | 1       |
| $v \sin i (\mathrm{km  s^{-1}})$                     | -                          | 53                       | 44                     | 34                    | 90      |
| <i>i</i> (°)                                         | 43 <sup>(17)</sup>         | 65 <sup>(12)</sup>       | 60 <sup>(18)</sup>     | 50 <sup>(13)</sup>    | 60      |
| $v_{\rm exp}({\rm kms^{-1}})$                        | 10 <sup>(19)</sup>         | 30 <sup>(15)</sup>       | 20 <sup>(20)</sup>     | 19(13)                | 8       |
| $t_{\rm kin} \ (10^4 \ {\rm yr})$                    | 2                          | 0.7                      | 1                      | 1                     | 3.7     |
| $\dot{M}_{\rm kin}/\dot{M}$                          | 10–20                      | 7                        | 45                     | 250                   | 40-60   |
| log (N/H)+12                                         | 8.44 <sup>(16)</sup>       | 8.91(6)                  | 8.42 <sup>(7)</sup>    | 7.51 <sup>(13)</sup>  | 8.21    |

References: (1) Walborn et al. (1989); (2) Moffat (1983); (3) Walborn & Fitzpatrick (2000); (4) Taylor et al. (2014); (5) Arnett et al. (1989); (6) Hendry et al. (2008); (7) Nota et al. (1996); (8) Smith et al. (2013); (9) Blondin & Lundqvist (1993); (10) Martin & Arnett (1995); (11) Panagia et al. (1991); (12) Brandner et al. (1997a); (13) Smith et al. (2007); (14) Plait et al. (1995); (15) Brandner et al. (1997b); (16) Matting at al. (2010) (17) Jakobsen et al. (1991); (18) O'Hara et al. (2003); (19) Crotts & (1001)

et al. (1997b); (16) Mattil (20) Hutsemekers et al. (1 <sup>a</sup>Based on the fading of th



on line.

12

He - Ha luminosity evolution



#### No Oxygen in late time spectra: fall back confirmed!



const

н , +





SN 1996al: low energy explosion of a massive star (M<sub>ZAMS</sub>~25 M<sub>☉</sub>; 7-8M<sub>☉</sub> BH) sustained by ejecta-asym CSM interaction

M<sub>CSM</sub> >0.15 M<sub>☉</sub>; with a ring-like (r<sub>ext</sub>~0.15 pc; r<sub>inner</sub> ~3x10<sup>15</sup> cm) plus more symmetrically distributed clumps.

Growing indication that massive stars have strong mass loss episodes just before explosion, and sometimes have asymmetric CSM.

We have derived the CSM shape/properties just analysing the SN spectrophotometric evolution of the supernova!

Supernovae can be powerful tools to probe the local CSM -> gives informations on the progenitor star evolution just before explosion!

