Probing the physics of bright SNe with high-cadence photometry

ALCESTE BONANOS & PANOS BOUMIS NATIONAL OBSERVATORY OF ATHENS, GREECE

Motivation

 Explore short-timescale and lowamplitude variability properties of SN light curves

Probe supernova physics (e.g. explosion, ejecta)

Learn about SN progenitor system

X-ray: (NASA/CXC/Penn State/S.Park et al.) Optical: NASA/STScI/UIUC/Y.H.Chu & R.Williams et al.

SN 2014J

SN 2014J in M82 (3.3 Mpc) reached V_{max}=10.6 mag (Foley et al. 2014)

> High-cadence photometry obtained with the 2.3m Aristarchos telescope Helmos Observatory, Greece

http://helmos.astro.noa.gr/

"Fast variability is <u>not</u> expected from supernovae (because the shell is too large to change fast), but then no one has ever looked. Similarly, no one [expected] fast variations from novae during their optically-thick shell phase, but the first time anyone looked, for U Sco in 2010, the nova was seen to have many hour-long flares, with these still being completely unexplained."

B. Schaefer 2014, AAVSO Alert Notice 495

SN 2014J

SN 2014J in M82 (3.3 Mpc) reached V_{max}=10.6 mag (Foley et al. 2014)

> High-cadence photometry obtained with the 2.3m Aristarchos telescope Helmos Observatory, Greece

http://helmos.astro.noa.gr/

February 16-19, 2014 5 sec (V) & 20 sec (B) exposures 2 min cadence

Results

Siverd et al. (2015)

Bonanos & Boumis (2016, A&A, 585, 19)

Results

Table 1. Decline rates α (mag day⁻¹) and values of σ_w , σ_r , σ_N (mag) based on SN–S1 of the V- and B-band light curves of SN 2014J.

			and the second s							and the second s
Night	Filter	$\alpha_{\rm SN-S1}$	$\alpha_{\rm SN-S2}$	$\alpha_{\rm SN-S3}$	$\alpha_{\rm SN-S4}$	$\alpha_{\rm SN-S5}$	$\alpha_{SN_{\text{TFA}}}$	σ_{w}	$\sigma_{ m r}$	σ_N
1	V	0.06 ± 0.01	0.15 ± 0.01	0.17 ± 0.02	0.15 ± 0.03	0.16 ± 0.02	0.14 ± 0.02	0.0086	0.0045	0.0048
2	V	0.09 ± 0.01	0.09 ± 0.01	0.10 ± 0.02	0.08 ± 0.03	0.07 ± 0.03	0.07 ± 0.01	0.0107	0.0050	0.0053
3	V	0.10 ± 0.01	0.07 ± 0.02	0.04 ± 0.03		0.08 ± 0.03	0.09 ± 0.04	0.0177	0.0052	0.0061
4	V	0.03 ± 0.01	0.04 ± 0.01	0.05 ± 0.02	0.02 ± 0.03	0.03 ± 0.02	0.04 ± 0.01	0.0131	0.0046	0.0052
1	В	0.09 ± 0.01	0.19 ± 0.01	0.24 ± 0.03	0.21 ± 0.03	0.17 ± 0.05	0.22 ± 0.05	0.0104	0.0025	0.0031
2	В	0.14 ± 0.01	0.12 ± 0.01	0.12 ± 0.03	0.10 ± 0.03	0.07 ± 0.04	0.09 ± 0.01	0.0074	0.0033	0.0036
3	В	0.16 ± 0.01	0.13 ± 0.02	0.11 ± 0.03		0.20 ± 0.04	0.15 ± 0.03	0.0186	0.0036	0.0050
4	В	0.07 ± 0.01	0.06 ± 0.02	0.11 ± 0.03	0.09 ± 0.04	0.12 ± 0.04	0.06 ± 0.01	0.0128	0.0059	0.0063

Measured decline rate per night of a Type Ia SN for the first time

- \odot 10 error from aperture photometry is 1.4 mmag
- 3-6 mmag precision (based on red noise estimation, Pont et al. 2006)
- 2-5% variability corresponds to a 1-2.5% fractional change in radius (104 AU) on day 17) and is consistent with 4.5% (3σ) upper limit from Siverd et al. (2015)

$$\sigma_N^2 = \frac{\sigma_w^2}{N} + \sigma_r^2$$

Results

0.05 mag (8.2σ in V, 10σ in B)

0.04 mag (7.7 σ in V, 6.3 σ in B)

Origin of variability in SN 2014J

- Intermediate mass elements in the outer layers (Hole et al. 2010)
- Interaction of the ejecta with circumstellar material (Foley et al. 2014)
- asymmetry of the ejecta (non-spherically symmetric explosion, Wang & Wheeler 2008)

onset of secondary maximum (Pinto & Eastman 2000)

SNe from the Kepler K2 mission

Olling et al. (2015, 3 Type Ia SNe) no signature of ejecta interaction with companion

Garnavich et al. (2016, 2 Type IIp SNe) detection of shock breakout in KSN 2011d

Bright supernovae

		Discovery	Last	Last	Max	Max				
RA	DECL	Date	Mag	obs	Mag	Date	Туре	z	Host	Link
17:43:05.20	-28:27:39.4	2011/08/01.000	12.8**	02/26	0-1	08/01	unk	n/a	Milky Way	VVV-WIT-05
09:55:42.14	+69:40:26.0	2014/01/21.810	18.0**	09/28	10.1	02/03	Ia-HV	0.000677	M82	2014J
12:45:09.10	-00:27:32.5	2014/12/09.610	15.3**	04/13	11.1	12/18	Та	0.005101	NGC 4666	ASASSN-141p
07:36:15.76	-69:30:23.0	2015/03/09.789	19.1**	10/02	12.9	03/22	Та	0.004000	NGC 2442	2015F
03.08.48.44	-35.13.50.9	2015/09/27 160	19 6**	04/10	13.0	10/12	Ta	0.015000	ESO 357-65	ASASSN-15pz
12.42.16 69	-31.33.21 5	2015/04/26 190	12 1**	05/11	12 1	05/11	Ta	n/a	anonymous	ACACCN_15by
12.21.57.57	-31:33:21.5	2013/04/20.100	17 6**	04/22	12.1	10/20	Ia To pog	11/a	anonymous	201445
12:21:57.57	+04:20:10.0	2014/10/29.838	17.0**	04/22	13.2	10/30	Ia-pec	0.005200	M01	201400
11:49:25.48	-05:07:13.8	2015/06/29.//3	13.4**	07/21	13.4	0//21	Ia	0.005600	10 2963	PSN J11492548-0
15:05:30.07	+01:38:02.4	2015/03/16.490	17.1**	06/05	13.6	04/03	1a-91bg	1 0.00406	9 NGC 5839	2015bp
11:57:44.44	-10:10:15.7	2014/03/12.400	15.5**	05/03	13.6	03/22	IC	0.005700	PGC 37625	2014ad
11:14:11.04	+48:19:07.2	2015/11/08.620	13.9**	12/14	13.7	11/23	Ia	0.007125	NGC 3583	ASASSN-15so
12:24:30.98	+75:32:08.6	2014/06/18.880	17.6**	09/17	13.8	06/29	Ia	0.005594	NGC 4386	2014bv
12:04:51.50	+26:59:46.6	2014/10/28.875	17.0**	04/08	13.9	11/03	Ib	0.001890	NGC 4080	MASTER OT J1204
12:55:15.50	+00:05:59.7	2016/01/20.586	15.9	04/13	13.9	02/11	IIP	n/a	UGC 8041	2016X
03:48:19.78	+70:07:54.5	2014/09/11.725	17.3**	01/31	13.9	09/29	Ia	0.004000	UGC 2855	2014dg
10:54:34.13	+54:17:56.9	2014/01/14.317	17.9**	05/25	13.9	01/31	IIL	0.004503	NGC 3448	2014G
10:52:53.26	-32:55:34.9	2015/01/08.300	14.6**	01/16	14.0	01/09	Ia	0.010921	NGC 3449	ASASSN-15aj
07:17:45.70	+23:20:40.6	2015/05/02.482	14.0**	05/19	14.0	05/19	Ia	0.007589	NGC 2357	20151
03:44:23.99	-44:40:08.1	2014/06/03.182	14.7**	06/06	14.0	06/03	Ib	0.003000	NGC 1448	2014df
10:08:11.37	+51:50:40.9	2015/11/15.778	16.6	03/80	14.0	12/02	II	0.003600	UGC 5460	2015as
10:29:30.76	-35:15:35.2	2015/04/17.050	16.4**	06/13	14.2	05/03	Ia	0.005000	ESO 375-G41	ASASSN-15hf
15:46:58.69	+17:53:02.5	2015/02/15.580	14.5**	03/03	14.2	02/19	Та	0.010998	NGC 5996	ASASSN-15db
09:18:31.05	+74:19:07.0	2015/06/05.280	14.4**	06/20	14.3	06/08	Та	0.013000	UGC 4883	ASASSN-15kk
13:25:24.119	-43:00:57.90	2016/02/08.560	16.1**	02/11	14.3	02/08	TTh	n/a	NGC 5128	2016adi
00.59.47.83	-07:34:18.6	2014/09/02.572	16 5**	01/13	14.3	00/00	TTP	0 005490	NGC 337	2014cx
14.10.23 42	-43.18.43 7	2015/12/15 066	16.5**	02/17	14.5	12/15	Th	0.005490	NGC 5483	DSN
14.10.23.42	+50.22.49.2	2013/12/13.000	15 0**	12/25	14.4	10/25	To	0.016055	NCC 2771	ACACCN 14in
12.10.40 60	+14.24.42 5	2014/10/12.010	15.0**	12/23	14.4	10/25	Ia	0.010035	NGC 2//I	20141
12:10:40.00	70.20.20 0	2014/01/20.030	10.9**	11/27	14.4	11/27	IC To	0.008029	NCC 7122	20141
21:50:50.94	-70:20:28.9	2015/11/2/.8/1	14.5**	11/2/	14.5	11/2/	Ia	0.012000	NGC /123	PSN 321505094-7
19:19:33.49	-33:46:02.0	2015/08/31.090	14./**	09/06	14.5	09/03	11	0.007000	HIPASS JI919-	-33 ASASSN-150Z
23:33:13.90	-60:34:11.5	2014/10/21.12	15.1**	11/1/	14.5	11/06	Ia	0.014800	PGC 128348	ASASSN-14jg
00:45:32.55	-14:15:34.6	2014/10/01.110	15.0**	01/09	14.5	11/09	lin	0.022000	PGC 3093694	ASASSN-1411
23:44:48.00	-02:07:03.2	2014/05/20.590	15.5**	09/03	14.5	05/20	IIb	0.006700	PGC 1101367	ASASSN-14az
01:39:32.03	+33:49:36.0	2016/01/04.30	15.6**	02/04	14.5	01/14	Ia	0.016000	KUG 0136+335	2016F
00:43:21.14	+41:24:59.7	2015/09/19.974	17.0**	10/08	14.6	09/29	FeII	n/a	M31	Nova M31 2015-0
04:20:01.41	-54:56:17.0	2014/09/10.290	15.7**	12/28	14.6	09/10	II	0.005017	NGC 1566	ASASSN-14ha
11:20:59.02	+53:10:25.6	2016/03/13.974	16.0	04/11	14.6	03/24	Ib	0.003856	NGC 3631	2016bau
03:09:42.51	+40:58:29.3	2015/11/30.306	15.9**	12/18	14.6	12/08	Ia	0.020000	IC 290	2015az
22:09:09.64	-47:08:02.5	2015/12/29.030	14.7**	12/29	14.7	12/29	Ia	0.005839	NGC 7213	ASASSN-15us
02:48:59.57	+03:10:10.5	2015/07/05.610	15.9**	09/06	14.7	07/21	Ia	0.013900	UGC 2295	ASASSN-15mc
10:48:49.44	-20:15:49.1	2016/03/30.190	14.7	04/14	14.7	04/14	Ia	0.012000	anonymous	2016blc
11:55:04.25	+01:43:06.8	2016/01/03.620	15.6	04/12	14.7	01/03	IIP	0.004293	CGCG 12-116	2016B
08:24:15.02	-18:46:28.1	2015/09/13.150	19.5**	03/22	14.7	09/18	II-pec	0.008000	IC 2367	2015an
02:28:32.86	+20:17:07.7	2015/07/10.744	16.5**	09/06	14.7	07/18	Ia	0.013700	NGC 938	2015ab
23:27:40.86	+23:35:21.4	2014/08/09.517	14.9**	09/02	14.7	08/28	II	0.011000	NGC 7673	2014ce
22:55:01.97	-39:39:34.5	2014/05/07.758	15.3**	05/10	14.7	05/07	Ta-91bo	1 0.00580	0 NGC 7410	2014ba
13:30:44.88	+32:45:42.4	2014/05/27.240	14.7**	06/06	14.7	06/06	Ta-91T	0.015580	UGC 8503	iPTF14bdn
00:12:01.58	+26.23.37.3	2015/01/09.220	14.8**	01/20	14.8	01/20	Ta-pec	0.015000	UGC 110	ASASSN-15ak
10.44.44 34	-52.49.05 5	2014/11/10 030	14.0**	11/10	14.0	11/10	Ta-pec	0.012000	DCC 429245	ACACCN-14 iz
10.10.10 21	+41.25.20 2	2016/02/21 202	15 4	04/10	14.0	02/22	17	0.002000	NGC 2104	2016bku
10.10.19.31	+41.20.09.0	2010/03/21./03	14 0++	04/10	14.0	05/23	TTD	0.002000	M106	2010bKv
12:10:0/./1	+15.40.22	2014/05/20	14.0**	00/20	14.0	00/20	TTP	0.001494	MIUO	CDTDTDC15rrd
12:22:55.29	+15:49:22.0	2015/09/13	14.9**	09/13	14.9	09/13	unk	n/a	anonymous	SPIRITSISUE
00:42:42.53	+41:15:13.9	2015/06/03.047	14.9**	06/06	14.9	06/06	rell	n/a	M31	NOVA M31 2015-0
01:49:10.32	+05:38:23.3	2015/06/20.610	14.9**	06/21	14.9	06/21	Ia	0.017686	MRK 576	ASASSN-151p
22:16:11.81	+37:28:26.1	2015/06/10.570	14.9**	09/06	14.9	09/06	Ia	0.018000	MCG +6-49-1	ASASSN-15kx
13:38:05.30	-17:51:15.3	2016/01/03.841	17.2*	03/04	14.9	01/04	IIP	0.004520	NGC 5247	2016C
09:25:44.53	+34:16:36.1	2015/09/21.072	17.9**	01/28	14.9	10/13	II	0.005400	UGC 5015	<u>2015aq</u>
07:28:53.87	+33:49:10.6	2015/02/13.338	14.9**	02/22	14.9	02/22	Ibn	0.013790	NGC 2388	20150

http://www.rochesterastronomy.org/snimages/snmag.html

507138

51.50+265946.6

318437

020289

9c?

SNe with $V_{max} < 15$ mag

2014: 21 SNe (14 north)

2015: 28 SNe (18 north)

2016 (Jan-May): 8 SNe (5 north)

6a?

Future

Follow-up future bright supernovae with 2.3m Aristarchos telescope (9 nights in Fall 2016)

Use NELIOTA lunar imager on 1.2m Kryoneri telescope to monitor future bright supernovae (starting in Fall 2016)

2.3 m Aristarchos telescope

1.2 m Kryoneri telescope

NELIOTA lunar monitoring

NELIOTA is an ESA project aiming to establish an operational system at Kryoneri Observatory, Greece to conduct lunar monitoring. The goal is to determine the distribution and frequency of Near Earth Objects (NEOs) by detecting lunar flashes.

The Lunar Imager has a dichroic and 2 scMOS Andor cameras and will observe in the R and I-bands at 30 fps.

http://neliota.astro.noa.gr/

Kryoneri Observatory

Conclusions

High-cadence photometry is a powerful tool for probing supernova physics (e.g. clumping, asphericity, shock breakout)

Evidence for rapid variability at the 2–5% level on 15–60 min timescale detected in SN 2014J on 4 consecutive nights

First measurement of intraday decline rate for a SN Type Ia

Future monitoring of bright supernovae planned with 1.2m Kryoneri (NELIOTA Lunar Imager) and 2.3m Aristarchos telescopes

Stay tuned!