The Remnant of SN1987A

Dick McCray Chania, 10 June 2016

Topics

- Light Curves
- Reverse shock
- Hotspots
- ALMA: CO and SiO

Comments about light curves:

- Optical light from interior has faded by factor ~10⁻⁷
- Luminosity of interior is dominated by Far-IR: ~ 220 L_{\odot}
- Far-IR is ~ 90% of energy deposited by 44 Ti decay.
- Upper limit of energy input from compact object is ~ 30 L_{\odot}
- Today, luminosity is dominated by near-IR and X-ray emission from shocked ring
- Optical/UV emission from ring reached a maximum at t = 400 days, then faded.
- Ring began to brighten again when hotspots appeared @ t
 ~ 5000 days. Now leveling off. Not as bright as initial
 maximum.

Reverse Shock

 $\Delta\lambda$

Line emission and impact ionization at reverse shock surface

What we have learned from STIS

- Reverse shock has entered equatorial ring
- RS is expanding with radial velocity ~ 1400 km/s
- Can map H α emission from near side of internal debris, expanding with velocity ~ 6000 km/s
- Can't see much ${\rm H}\alpha$ from far side because of internal dust

Hotspots

Feb, 1996

Feb, 1998

Sep, 1994

Mar, 1995

Nov, 2003

Sep, 2005

Dec, 2009

Dec, 2006

Feb, 2008

Jan, 2011

Feb, 2013

Jun, 2014

Apr, 2009

Distance of SN1987A

 $D = d/\theta$, where:

d = line of sight diameter (from IUE light curves of narrow lines)

 θ = angular diameter (from Hubble image)

The mistake:

Hubble image (pre-hotspots) was low density ring IUE light curves were dominated by ring of hotspots

Should use Hubble image of hotspots: reduce θ by 5%. a D should be increased by 5%, from 51.2 \pm 3 to 53.7 \pm 3 kpc

 Helix Nebula Detail
 HST • WFPC2

 PRC96-13b • ST Scl OPO • April 15, 1996 • C.R. O'Dell (Rice Univ.), NASA

Structure of a "radiative" shock

FIG. 12.—Model shock cooling time $t_{\rm cool}$ vs. shock velocity $V_{\rm shock}$ for initial obstacle density $\rho_0 = 2 \times 10^4$ amu cm⁻³ (solid line). The power-law fit $t_{\rm cool} \propto V_s^{3.8}$ (dashed line) is also shown.

Cooling timescale is a sensitive function of shock velocity: $n_0 \; t_{\text{cool}} \propto V_{\text{shock}}{}^{3.8}$

Such "radiative shocks" are subject to violent instabilities

- $n_0 t \sim V^{3.8}$
- $p \sim n_0 V^2$
- $V \sim [p/n_0]^{1/2}$
- $n_0 t \sim p^{1.9} n_0^{-1.9}$
- $n_0 \sim p^{0.5} t^{-0.3}$

The Velocity of shocks entering clumps is determined by driving pressure of outer SN debris across the reverse shock:

p = ρ_{debris} V_{debris}², increases *fast*: p \propto t^{3.5}.

If shock is radiative, optical luminosity increases rapidly with time, L(t) $\propto t^{5.25}$ to maximum value $L_{max} \propto n^2.$

There is a critical density, $n_{crit} \approx 10^4$ cm⁻³, below which the shocks will be non-radiative. The shocked gas will radiate soft X-rays and very little optical radiation. The shocks will erase optical narrow line emission.

Conclusions

- The early (t< 3 year) light curve (IUE) of the ring was dominated by dense (n > 3 \times 10⁴ cm⁻³) hotspots.
- The ring imaged by Hubble (before hotspots appeared) was dominated by less dense (n < 3 \times 10³ cm⁻³) gas.
- The ring that IUE measured is smaller than the Hubble ring. Allowing for this increases SN1987A distance estimate by $\sim\,$ 5%.
- Hotspots manifest radiative shocks entering dense clumps.
- Hotspots are fading now, as instabilities dissolve dense gas formed by radiative shocks.
- X-ray emission is dominated by non-radiative shocks in lower density gas. X-rays continued to rise as hotspots faded.
- New hotspots are appearing outside ring in SE quadrant.
- This scenario begs for 2- or 3-d hydro simulations.

Mapping of Internal Debris with ALMA

ALMA Spectra

Inferring properties of molecular zones from emission lines

```
e.g. CO 2-1, L_{21} = 1.05 \text{ e32 ergs/s};

If optically thin, uniform density:

L_{2-1} = N_{CO} f_2 A_{21} h v_{21}; v_{21} = 230 \text{ GHz}; A_{21} = 6.9 \text{ e-7 s}^{-1}

If LTE: f_2 = 5G(T)^{-1} \text{ (exp(-E_2/kT))}

N_{CO} = 3.3 \text{ e53}; M_{CO} = 7.9\text{e-3} M_{\odot}
```

```
Filling factor: f_{CO} = V_{CO}/V_{1200}
V_{1200} = 4\pi/3 \ [1200 \text{ km/s *}28 \text{ years}]^3
n_{CO} \approx 60 \text{ cm}^{-3}/f_{CO}
```

SiO,
$$v_{54}$$
 = 217 GHz : A₅₄ = 5.2e-4 s⁻¹ \approx 700 A_{co}

Sobolev appoximation

L = L_{thin} P_{esc}(
$$\tau_S$$
), where P_{esc}(τ_S) = $[1 - e^{-\tau_S}]/\tau_S$,

and, for freely expanding debris,

$$\tau_S(J, J-1) = \frac{\lambda_0^3 t g_J A_{J,J-1} n_{J-1}}{8\pi g_{J-1}} \left(1 - \frac{g_{J-1} n_J}{g_J n_{J-1}}\right)$$

 $\tau_{s} \propto \, n_{0}/T$

A sequence of models for line emission

- 4. The RADEX Code
- Accurate in general: calculates level populations using Sobolev approximation
- Line luminosities depend on M_{CO}, f_{CO}, T_{kinetic}, collision rates (??)

Allowable CO parameter space determined from ALMA + SPIRE Observations

 $M_{CO} > 0.01 M_{\odot}$ $T_{CO} \approx 10 - 80 \text{ K}$ $f_{CO}\approx 0.05-1$

Isotopologues

```
e.g. <sup>13</sup>CO: v_{21} = 220.4 GHz, not seen!

L_{21}(^{13}CO)/L_{21}(^{12}CO) < 0.07

But L_{21}(^{13}CO)/L_{21}(^{12}CO) = [A_{13}/A_{12}][P_{esc}(^{13}CO)/P_{esc}(^{12}CO)]

A_{13}/A_{12} = 1.09e-2

P_{esc}(^{13}CO) \approx 1; P_{esc}(^{12}CO) \approx 1/\tau_{s}

no <sup>13</sup>CO implies \tau_{s} < 7, n_{co}/T < 3.8
```

Cycle 2 Angular Resolution (Band 7, 1.5 km baseline)

ALMA Imaging

Findings from ALMA

- $M_{CO} > 0.01 M_{\odot}$ at least 10 times more than seen at 18 months
- $T_{CO} \approx 10 80 \text{ K}$
- CO J = 3-2 line is brighter than J = 2-1 by factor 3.4
- Can map CO and SiO at resolution ~ 0.03 "

$$\tau_S(J, J-1) = \frac{\lambda_0^3 t g_J A_{J,J-1} n_{J-1}}{8\pi g_{J-1}} \left(1 - \frac{g_{J-1} n_J}{g_J n_{J-1}} \right)$$

 $\tau_{21} = .13^3 * 30^* 3.11 e^{75^* 6.9 e^{7^* 3n0^* (exp(-E1/kT)[1-exp(-E2+E1)/kT]/[8^* 3piG(T)]}$ E2-E1/k = (5-3)E0k = h*2.30e9/k =11/T 1.3^3*3*3.11*5*6.9*3 e(-3+1+7-7) = 102.47