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/ Introduction \ / Comparison with numerical simulation and Truelove&Mckee model \

In this poster, we present new analytical formula describing the
kinematic evolution of a non-radiative supernova remnants | - | S
(SNRs). We constrain our discussion to the simplest situation, Ry, simulation :
spherical expansion in homogeneous medium (no clouds) with 10 ¢ Rp model —--- S=0n=0 / 107 R model - 5=2 n=0
negligible ambient pressure to obtain analytical solution. | ™ mdc:?:l e ' ' | e —
Thermal conduction, magnetic field and acceleration of cosmic

ray particles are also not taken into account for simplification.
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The kinematic evolution of a non-radiative SNR is characterized
by the transition from a free expansion (FE) solution in the early
time when the ejecta mass M,; >> M, to the self similar Sedov-
Taylor (ST) solution (Taylor 1946; Sedov 1959) in the late time
when Mg, >> M,,;. Based on dimensional analysis, simple
approximation by connecting the FE solution and ST solution is
derived analytically. The analytical approximation is compared
with numerical simulation and model in Truelove&McKee 1999
for different density profile in both ejecta and ambient medium,

and found to be consistent with simulation results within a few o . . . _ o . .
{rcent accuracy for all the cases investigated in the work. / When n>5, a self similar driven wave (SSDW) solution exists during the transition from FE solution to ST solution

(Chevalier 1982). The SSDW solution is equivalent to M,("->)/2(n-s) [ 1/(ns)=g where T is a dimensionless constant. For
the time range interested in SNR evolution, only the transition from SSDW solution to ST solution is important
\ while the evolution from FE solution to SSDW is so fast and not relevant. The analytical approximation now
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/ Analytical method

becomes
n>>o
Based on 1t theorem (see e.g. chapter 1 of Barenblatt 1996), a . 1775
physical relation involving k+m physical variables with k e/ ey | (R 2a(n—s)/(n—3)) R5—=\ @
independent physical dimensions could be simplified into an t ( b) T ( ¢ ) T ( £ )
physical relation with only m independent dimensionless
" : . . . 1 . . 1

quantities, I.e. R,, simulation "] R,, simulation

@y, ees B -] =0 (1) 10 Rpmodel ——— 0 e 10}  Rpmodel ——— 5 e
o e o . TMmodel 5=0 n=7/ TM model S=2n=7/
involving k independent physical dimensions is equivalent to a4t a4t

F(My,..., M )=0 (2)

where I, ..., MN_ are independent dimensionless quantities built
with combination of a,..., a,,.
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The kinematic evolution of a non-radiative SNR under our
simplified assumptions involves 5 different physical variables,
explosion energy Eg,, ejecta mass M, ambient medium density
p,, remnant age t and blast wave radius R,, i.e. our goal is to 0.1t

derive an analytical approximation for the physical relation 3 AH , 0.0 ZM\K\M/\/\ e 0.01

f(ESNIMejIpaItIRb)=O' (3) 0.1 1 0.1 1
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The problem has 3 independent physical dimensions, length,
time and mass. According to it theorem, above equation is
equivalent to the following relation

F(My, M,)=0 (4)
where ;=R *M/t°Ey and M,=R°p,/E;\t"2 are the 2
independent dimensionless quantities available for the problem.
Interestingly, M,;=A%? and N,=¢, where A and § are appropriate
dimensionless constants, actually provides the FE solution and
ST solution respectively. Since the remnant follows the FE
solution in the early time, i.e. F(M,, M,)=M,-A*=0 when t->0, and
the ST solution in the late time, i.e. F(I,, MN,)=MN,-§=0 when t->co.
The following form of approximation

Summary and future work

In this poster, we present simple analytical approximation for the evolution of forward shock in a non-radiative
SNR. The fitting results and uncertainty introduced by the model are summarized in the following 2 tables for

both uniform ambient medium and wind density profile. Modeling for the reverse shock and possible extension
to radiative phase are still under work.

Table 1: Basic parameters for analytical model and Table 2: Basic parameters for analytical model and

numerical stimulation with s = 0 numerical stimulation with s = 2

F(M,, M,)=(M/A%)*+(N,/€)*-1=0 (5) n o t tfun Riwn, A*/t* n o a ¢ t tron  Rb.. At/t*

is investigated in detail and compared with simulation, where a 0 1 - 10— 0.65 085 <7% 0 095 - 103 0.11 014 < 1%
is a free parameter derived in fitting. 1 1 - 10—3 0.56 080 <7% 1 09 - 10— 0.09 012 < 1%
2 08 - 1073 044 070 <7% 2 085 - 1073 0.05 0.08 <2%

We assume the ejecta density profile has a flat core and a power 4 06 - 10—3 0.08 0.33 <4% 4  0.65 - 10~3 0.006 0.002 < 3%
law envelope, i.e. 6 25 1.06 3x107* 258 1.62 <12% 6 30 077 3x107* 13 08 <3%
Pei(r<reore)=Pcore AN Pei(r2reg e )=Pcorer/Feore) ™ (6) 7 3.0 106 3x107* 182 141 <6% 7 30 083 3x107* 074 059 <2%

The ambient medium follows a power law distribution 8 3.0 1.08 3x107* 145 1.29 5 6% 8 2.5 090 3x10~* 0.5 0.45 S 2%
o.(r)=n.r=. (7) 9 30 112 3x107* 125 121 < 5‘_}0 9 20 097 3x10* 039 037 < 2%

: . . : . 10 3.0 1.15 3x107* 112 116 <5% 10 1.8 1.03 3x107* 0.32 032 <2%

Now according to dimensional analysis, we could define the 9 93 191 3x10-4 100 1.00 z 61 19 15 114 3x10-4 095 096 z 197
characteristic radius R ,=(M,;/n,)/®) and time t=M{s//2(35In 1/ ses s o ST b ! > L e °o U ~
14 20 1.26 3x10 093 1.05 <6% 14 4 123 3x10 021 023 <2%

(s3)E O for the system. Denote quantity in the corresponding
characteristic scale as X*=X/X_,, the analytical approximation for
n<5 is found to be

~—
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where A and ¢ depend on the density distribution in ejecta and

ambient medium respectively and could be obtained
analytically. a is the only fitting parameter in the model.
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