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Type	Ia	Supernovae	(SNe	Ia)	

“Explosions	of	CO	white	dwarfs	in	
binary	systems,	which	get	

destabilized	through	mass	accre<on	
from	the	companion	star”	

	

Singe	Degenerate	Vs	Double	Degenerate	



Observa+ons	
of	nearby	SNRs	

Different	paths	of	
binary	evolu+on	

which	lead	to	Type	Ia		

Different	(or	no)	
mass	ouBlows	from	
the	progenitors	

à	Ambient	medium	
modifica+on	

Different:	
• 	Morphologies		
• 	Dynamics		
• 	Emissivity	
• 	Spectra					
					of	SNRs	

	

The	importance	of		CSM	
in	the	quest	of	theType	Ia	origin	



Do	type	Ia	SNRs	interact	with	CSM?	
Generally	speaking:	

Badenes	et	al.	2007,	yesterday’s	talk	

Lopez	et	al.	2009,	talk	

Ø  Type	Ia	SNRs	seem	to	evolve	in	a	
rather	uniform	ambient	medium		



“You	will	come	to	learn	a	great	
deal	if	you	study	the	
Insignificant	in	depth”	

	
(Odysseas	Ely?s)	
Nobel	Prize	in	Literature	



But	zooming	in	nearby	SNRs	Ia	
Ø  Several	‘peculiari<es’	that	cannot	be	explained	by	a	

SNR	+	uniform	ambient	medium	scenario	

Kepler’s	SNR:	Interac?on	with	an	asymmetric	AGB	bubble	
(Chiotellis	et	al.	2012;	Patnaude	et	al.		2012;	Burkey	et	al.	2013)	

RCW	86	:	Interac?on	with	a	low	density	cavity	
(Vink	et	al.	1997,	Williams	et	al.	2011;	Broersen	et	al.	2014)	

Tycho’s	SNR	:	Interac?on	history	with	small	dense	bubble	
(Dwarkadas	&	Chevalier	1998,	Chiotellis	et	al.	2013)	

Mature	SNRs	Ia:	e.g.	DEM	L238,	L249,	MCSNR	J0506−7025	
Dense	Fe	rich	cores	explained	by	SNR	+	CSM	interac?on		
(Borkowsky	et	al.	2006;	Kavanagh	et	al.	2015	)	



now	the	ques?on	is…	
Ø 	Is	a	circumstellar	medium	where:		
a)	Its	forma?on	can	naturally	be	explained	by	the	binary	evolu?on	
towards	a	SN	Ia?	
	
b)	it	can	explain	(some)	proper?es	observed	in	nearby	SNRs	Ia?		

We	suggest	that	such	a	CSM	
could	poten?ally	be	
represented	by		
Planetary	Nebulae	(PNe)		

SNe	Ia	



	PNe	as	the	origin	of	the	CSM	around	SNe	Ia	

•  Mo<va<on:	
(see	also	Tsebrenko	&Soker	2014)	

1)	SNe	Ia	progenitors:	one	or	two	WDs		
à	evolved	through	one/two	PNe	
phase(s)	
	
	
	
	
è	The	SN	Ia	+	PNe	scenario	host	both	
the	SD	and	DD	paths	
	
	

PNe	

WD	

2)	PNe	come	in	several	flavors	à	aligned	
with	the	observed		SNe/SNRs	Ia	diversity	
	
	
	
	
	

PNe	

WD	



Extra	boost	in	mo?va?on…	
	
	
	3)	Henize	2–428:	DD	super-Chandra		central	binary		
à	will	merge	triggering	a	SNe	Ia		
																																									(Santander-	Garcia	et	al.	2015)		

Hα	+	[NII]	

Aristarchos	
telescope	



Planetary	Nebulae	(PNe)	
Interac?ve	Stellar	Wind	theory			(Kwok	et	al.	1978)		

•  AGB:	slow,	dense	stellar	
wind	

•  Contrac?on	of	AGB	core:	
Fast,	tenuous	wind	

	



Planetary	Nebulae	(PNe)	
Interac?ve	Stellar	Wind	theory			(Kwok	et	al.	1978)		

•  AGB:	slow	dense	stellar	
wind	

•  Contrac?on	of	AGB	core:	
Fast	tenuous	wind	

•  Photoioniza?on	from	the	
hot	central	star	



Planetary	Nebulae	(PNe)	
Interac?ve	Stellar	Wind	theory			(Kwok	et	al.	1978)		

•  AGB:	slow	dense	stellar	
wind	

•  Contrac?on	of	AGB	core:	
Fast	tenuous	wind	

•  Photoioniza?on	from	the	
hot	central	star	

More	ingredients	are	needed	



How	a	SNR	interac?ng	with	a	PN				
looks	alike?	

•  It	deepens	
1)	proper?es	of	the	PN	

				2)	the	?me	delay	between	the	PN	forma?on		
								and	the	SN	Ia	explosion		

•  We	use	as	a	model	the	PN	
Henize	2–428	to	simulate	the	
general	PN	structure	

•  tdelay	<	tdyn,PN	

Ha	+	[NII]	

Aristarchos	
telescope	
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Forma?on	of	a	bipolar	PN	
•  2D	hydrosimula?ons	
•  Code	AMRVAC	(Keepens	+	’04)	

Wind	Formalism	
	
•  Asymmetric	wind	is	imposed	as	

an	inflow	at	the	inner	boundary	

•  Asymmetry	described	by	
trigonometrical	func?on	
following	Garcia-Segura+	'99	
	
	
	
	
	

Ω,μ,ν,λ	=	constants	
	
à	Determine	the	density/velocity		
contrast	from	poles	to	equator	and	
their	angular	gradient		
	
	
	

ρ(θ ) = (-Ω sin(θ )λ +1)µ × ( !Μ p / 4π upr
2 )   

u(θ ) = (-Ω sin(θ )λ +1)ν  ×up    



R	
(1
01

8 c
m
)	

Forma?on	of	a	bipolar	PN	
•  2D	hydrosimula?ons	
•  Code	AMRVAC	(Keepens	+	’04)	

nISM = 0.2 cm−3

!Μ p =10−5Μ⊕yr
−2

up =10 km / s
 

Wind	Formalism	
	
•  Asymmetric	wind	is	imposed	as	

an	inflow	at	the	inner	boundary	

•  Asymmetry	described	by	
trigonometrical	func?on	
following	Garcia-Segura+	'99	
	
	
	
	
	

Ω,μ,ν,λ	=	constants	
	
à	Determine	the	density/velocity		
contrast	from	poles	to	equator	and	
their	angular	gradient		
	
	
	

ρ(θ ) = (-Ω sin(θ )λ +1)µ × ( !Μ p / 4π upr
2 )   

u(θ ) = (-Ω sin(θ )λ +1)ν  ×up    

Ω = 0.9, λ = 2,

µ = −0.9, ν = 0.4

ρeq
ρp

= 7.9 ; ueq
up

= 0.4

1rst	step	AGB	wind	



Forma?on	of	a	bipolar	PN	

!Μ p =10−7Μ⊕yr
−1

up =1200 km / s
 

Ω = 0.2, λ = 2,

µ = −0.5, ν = 0.4

2nd	step	fast	wind	



Interac?on	of	a	SN	Ia		
with	the	surrounding	PN		

SN	ejecta:	
Power	law,	n=7	
	
Eej=1.2	foe	
Mej	=	1.4	Msun	

3rd	step	introduc+on	of	SN	Ia	



Which	nearby	SNRs	Ia		
such	a	scenario	can	explain?	

Modeling	evolu?on	about	Kepler’s	SNR	surrounding	CSM:	
	
1)	Morphology,	dynamics	of	SNR	and	chemical	composi?on							
of	CSM:	AGB	wind	bubble	(Chiotellis+	2012)	
	
à 	Observa?onal	verifica?on	from	IR	observa?ons													
					(Williams+	2012)	
	
2)	Dynamics	+	Xray	spectrum:		AGB	wind	+	cavity											
				(Patnaude+	2012)		
	
3)	Shocked	CSM	also	in	the	center	of	the	SNR:	AGB+	WD									
and	disk	distribu+on	of	CSM	(Burkey+	2013)	
	
4)	There	is	no	such	an	AGB	star	at	the																																									
center	of	the	SNR		(Kerzendorf+	2013)	
	
All	of	these	proper-es	demanded	by	Kepler’s	modeling	can	
be	hosted	by	a	PN	structure	around	the	explosion	center	



Which	nearby	SNRs	Ia		
such	a	scenario	can	explain?	

Modeling	evolu?on	about	Kepler’s	SNR	surrounding	CSM:	
	
1)	Morphology,	dynamics	of	SNR	and	chemical	composi?on							
of	CSM:	AGB	wind	bubble	(Chiotellis+	2012)	
	
à 	Observa?onal	verifica?on	from	IR	observa?ons													
					(Williams+	2012)	
	
2)	Dynamics	+	Xray	spectrum:		AGB	wind	+	cavity											
				(Patnaude+	2012)		
	
3)	Shocked	CSM	also	in	the	center	of	the	SNR:	AGB+	WD									
and	disk	distribu+on	of	CSM	(Burkey+	2013)	
	
4)	There	is	no	such	an	AGB	star	at	the																																									
center	of	the	SNR		(Kerzendorf+	2013)	
	
The	resul-ng	SNR	reveals	density	enhancement	at	
the	equatorial	plane	



Extra	bonus…	ears	forma?on	

‘ears’	

-	It	looks	
like	a	jet	
	
-	It	moves	
like	a	jet	
	
-But	it	is	
not	a	jet!	

Ø Ears	can	be	formed	by	an	interac-on	of		
the	SNR	with	a	bipolar	structure.	

	
The	advantages	of	this	scenario	are:	
	
•  No	‘extra	ingredients’		are	needed	

	
•  Ears	formed	at	the	equator	instead	of	the	poles:	This	

geometry	is	aligned	with	the	CSM	distribu?on		

•  No	extremely	large	PNe	(R~	2	-3.5	pc)	are	needed	

Tsebrenko	&	Soker	(2013)		Jets:					



SNRs	with	‘ears’	à	Interac+on	history	with	bipolar	CSM	
	

G19+0.3	

The	final	ears’	morphology	mainly	depends	on:	
-	The	geometry	of	the	bipolar	CSM	
-	The	density	contrast	of	the	CSM	–	ISM		
-	The	evolu?onary	state	of	the	SNR		

t=110	yr	 t=220	yr	 t=330	yr	 t=420	yr	 t=420	yr	 t=420	yr	



SNRs	with	‘ears’	à	Interac+on	history	with	bipolar	CSM	
	

G19+0.3	

The	final	ears’	morphology	mainly	depends	on:	
-	The	geometry	of	the	bipolar	CSM	
-	The	density	contrast	of	the	CSM	–	ISM		
-	The	evolu?onary	state	of	the	SNR		

t=110	yr	 t=220	yr	 t=330	yr	 t=420	yr	 t=420	yr	 t=420	yr	

-	It	looks	
like	a	jet	
	
-	It	moves	
like	a	jet	
	
-But	it	is	not	
a	jet!	



Summary	
•  Model	of	SNe	Ia	+	PNe:	
à	PNe	seems	promising	candidates	for	the	CSM	observed	around	SNe	Ia	as	

² 	Can	naturally	be	explained	by	the	SN	Ia	binary	evolu?on	theory	
² explain	SNe/SNRs	Ia	diversity	

•  Henize	2-428	the	progenitor	of	Kepler’s	SNR?	
² Bridges	all	the	demands	of	theore?cal	models:	

² CSM	composi?on	and	distribu?on	
² 	Aligned	to	the	demands	imposed	by	the	X-ray	spectra	
² Explains	the	SNR	‘ears’	forma?on		

² Detailed	3D	modeling	is	needed	(in	prepara?on)	
	

•  SNRs	revealing	an?symmetric	lobes	(ears)	
² Interac?on	history	with	a	bipolar	circumstellar	structure	(also	applicable	for	
core	collapse	SNe)	

² Ears	are	formed	in	the	equatorial	plane	of	the	progenitor	binary	(and	not	at	
the	poles	as	the	jets	theory	demands)	


