Synchrotron emission in the case of a partly random magnetic field,
and the study of some general properties of radio shell-type SNRs.
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SYNCHROTRON EMISSION (ciassical Theory) APPLICATIONS TO A SIMPLIFIED MODEL
FO{'a homog_eneou:s magnelic field (.e. g Rybicki & Lightmann 1979) OF SH ELL-TYPE SU PER N OV A REM N ANT

* Single-particle (y fixed) synchrotron emission = spectral powers ~ and £ . approximation: although simplified, it allows a detailed modelling.
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Characteristics: anisotropic, and strongly linearly polarized emission.
While for a randomly oriented field

T | T
i oh so that a Rotation Measure parameter can be defined, by 8 = RM A2
* In the case of internal Faraday rotation, we now have instead:
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* No polarization

* |sotropic emission (simply the orientation-averaged emissivity) depolarization U = fobs(sin(ZRMobS/lz)Qi + COS(ZRMObS/lz)Ui), ““how wavelength dependent

BUT how (o treat the combination of an ordered and a random field ?

« Just sum up the two emissivities ? See Bandiera & Petruk (2016) for a generalized momentum treatment, in the short A limit.
€.g. X % I(Bordered) Y% I(Brandom) NO

I SOME RESULTS

Or mteg rate the emissivities for the com posed Example. [sofropic particle injection, field as due fto compression of the ambient field; aspect angle of 60

field over the whole probability distribution of i B..q
o ord A. Maps of Stokes parameters |, Q, U, polarization B. Same as Fig. A, but with the addition of a random
the random Component ' OK fraction I1, magnetic polarization angle ¥z, and field of same magnitude of the ordered field: note

vectorial map of the magnetlc polarlzatlon HB the lower polarization fraction and different pattern.
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EXTENSION OF THE STANDARD THEORY TO
TREAT A MIX OF ORDERED + RANDOM FIELD
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e 7 < 5 IR (of order unity, near the center) included. First the rotation measure as from the standard
homogeneous magnetic field. F.(a,b,z) is the Kummer confluent hypergeometric function definition, for the whole SNR, or just for the front

(7) or rear (r) layer. Then the first power-law exp-
ansion terms of RM_,()\?) as well as the first non
trivial terms of the depolarization factor £, (\?).
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Map of the synchrotron polarization Incorrect result obtained by simply adding
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valid for an efficient field amplification o

» Suggested as a tool to distinguish a polar-cap 020F
structure from a barrel-like one (Rothenflug et al. 2004). |
* Low surface brightness near the projected center |
as incompatible with a barrel-like SNR structure. i oo}

upstream of the shock, and subsequent "
shock compression. (analytical solution) |
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» Why lower polarizations in radio SNRs? T T S . . AN
. Just an effect of geometric projection 2 : * But isotropic emission is implicitely assumed. oos|-ZBogy
Analysis of case where the ordered MF has a barrel |
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O L e I TN — iy Therefore the criterion introduced by Rothenflug et al. 2004 needs to be revised.




