Chandra Observation of the Break-out SNR N11L Wei Sun^{1,2}, You-Hua Chu³, Yang Chen¹, Rosa Williams⁴

¹Nanjing University, China; ²Purple Mountain Observatory, CAS, China; ³Academia Sinica Institute of Astronomy and Astrophysics, Taiwan; ⁴Columbus State University, USA

Abstract

- We analyzed the *Chandra* observation of N11L, and found that
- X-rays mainly distributes in the major shell, with a bright NE-SW ridge; and extends to the north, but still confined by the [O III] filaments;
- spectral fitting result of the plasma in the south region is distinctive from those in the other regions;
- substantial explosion energy is lost during the early stage based on the energy and dynamics arguments;
- ► the environment is quite inhomogeneous: the physical condition of the X-ray emitter may have been altered by over-density medium at south.

Major Data

► X-ray: *Chandra* 6 segments of the N11 Project (PI: You-Hua Chu), exposure

Multi-band Images

- time: 300 ks in total;
- \blacktriangleright Optical Image: H α , [O III], and [S II] images taken by the MOSAIC camera on the CTIO Blanco 4m Telescope.

X-ray Spectroscopic Analysis

The whole and 6 separate parts, double-subtraction, *vnei* modeling:

- ► X-rays predominantly in the major shell and the SE loop-like filaments, with an extension to the north;
- ► No X-ray spectral variation all across the SNR;
- Bright NE-SW X-ray ridge, peaks at the center and southwest;
- ► Northern X-ray extension confined by the [O III] filaments;
- \triangleright [O III] shell located slightly further than H α and [S II] at south.

Derived Hot Gas Mass and Thermal Energy

Sedov Age and Explosion Energy

$$ightarrow kT_{
m Shell}\sim 0.50$$
 keV $\Rightarrow v_{
m exp}\sim 640$ km s $^{-1}$ $\Rightarrow t_{
m Sedov}\sim 4.0 imes 10^3$ yr,

Spectral Fitting Result

comparable to shock heated age $(n_e t / n_{e,rms})$: – $3.2 imes 10^3$ yr (North), $4.4 imes 10^3$ yr (Shell)

► Assuming

1. most of the X-ray emitter is shocked ISM, and 2. the shell area covers half of them \Rightarrow

$$n_0 \sim 0.2 \left(rac{EM_{
m Shell}}{1.9 imes 10^{57} {
m cm}^{-3}}
ight)^{1/2} \left(rac{R}{6.5 {
m pc}}
ight)^{-3/2} {
m cm}^{-3} \Rightarrow$$

the explosion energy

$$E_{
m tot} \sim 5 imes 10^{49}\,{
m ergs}$$

is comparable to the thermal energy. Substantial explosion energy is lost during the early stage.

Inhomogeneity Environment

At the south part, based on:

- ► IR studies
 - Enhanced 24 μ m emission (Seok et al. 2013);
 - ionic emission based on IRS spectra (Williams et al. 2006).

very little LMC absorption except for the South region; constrained NEI in the North and Shell region; ▶ sub-LMC abundance, but consistent with each other.

- ► X-ray analysis
 - lowest kT,
 - -major portion of $M_{\rm hot}$ and $E_{\rm th}$, - extra absorption in the south region, + but uniform H I distribution all across the SNR;
 - + extra absorption, if all contributed by molecular gas, is consistent with the non-detection of CO by MAGMA (Wong et al. 2011); A possible scenario is at south the X-ray emitter is supplemented by molecular cloudlets.