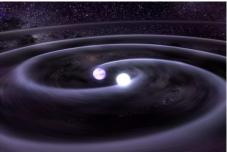
Type Ia Supernova Archaeology: Searching for the relics of progenitors past

Tyrone E. Woods Monash Centre for Astrophysics


June 6, 2016

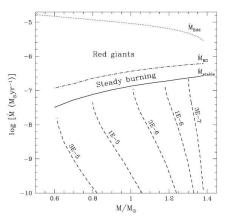
With Marat Gilfanov, Armin Rest, Alejandro Clocchiatti, Lev Yungelson, Jonas Johansson, Marc Sarzi, Hai-liang Chen, et al.

Tyrone E. Woods

Single Degenerate

Double Degenerate

Observational diagnostics


Single Degenerate channel

- Recurrent novae
- Optically-thick winds?
- Supersoft sources (SSSs)

 ${f L}_{
m bol}pprox 10^{37}$ – 10^{38} erg/s ${f T}_{
m eff}pprox 10^5$ – 10^6 K \sim blackbody spectra

Double Degenerate channel

- None of the above?
- Mergers could eject matter, undergo short SSS phase prior to explosion

White dwarf accretion regimes Nomoto et al. (2007)

Upper limits from X-rays

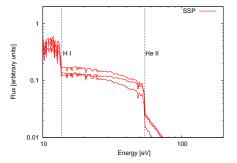
Individual Objects

- Archival Chandra data can place limits on soft X-ray luminosity in ~ few years prior to explosion (e.g., Nielsen et al.)
- Only most recent, nearby SNe Ia. Need to be lucky!
- Most constraining for higher temperatures than seen for most observed SSSs

Populations

- Constrain integrated emission from populations (Gilfanov & Bogdan (2010), Di Stefano (2010))
- For any single degenerate population: $L_{bol,tot} \approx \epsilon X \Delta M \dot{N}_{Ia}$
- Need to account for lower temperatures, possibly additional local obscuration

What about searching for ISM ionized by these high-temperature sources?

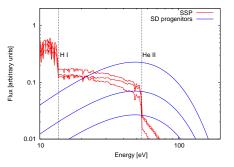

- Accreting, nuclear-burning WDs should also be strong ionizing sources through much of their growth to $\rm M_{Ch}$
- If steadily accreting, for typical SSS temperatures we expect individual nebulae to have strong He II, [O II], [O I] emission (e.g., CAL 83, and see Rappaport et al. (1994))
- How do nuclear-burning white dwarfs compare with other ionizing source populations?
 - In star-forming galaxies, expect O stars to easily dominate ionization budget
 - In passively-evolving (retired) early-type galaxies, less competition

SNe la progenitors at late delay times

The ionized gas in passively-evolving early-type galaxies

Low-Ionization Emission Line Regions (LIERs)

- Elliptical galaxies have warm (T $\approx 10^4$ K) ISM (e.g., SAURON, CALIFA)
- Extended (kiloparsecs) LINER-like emission
- Often in smooth, disky distribution (covering fraction ~1/2, e.g., ATLAS 3D), although other morphologies seen as well

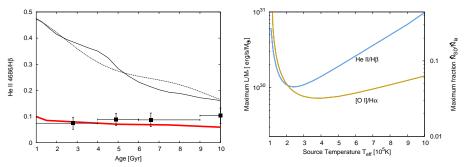


Simple stellar population (SSP) Bruzual & Charlot (2003)

SNe la progenitors at late delay times

The single degenerate channel as a population of ionizing sources

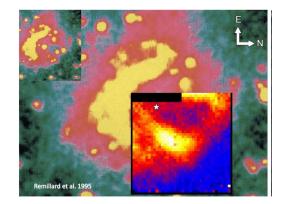
- Should see strong He II 4686Å, [O I] 6300Å emission (Woods & Gilfanov (2013))
- He II is a good diagnostic, but intrinsically weak line
 → Need to stack carefully selected retired galaxy spectra (for details, see Johansson, Woods, et al. (2014))



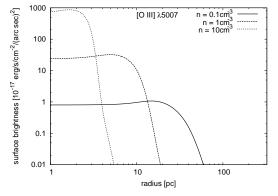
Inclusion of single degenerate population

SN la progenitors at late delay times

No room for hot SN Ia progenitors at late delay times

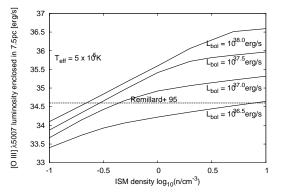

At late delay times (e.g., 1 Gyr < t < 4 Gyr), we exclude $\gtrsim \! 10\%$ hot single-degenerate progenitors

Johansson, Woods, et al. (2014), Woods & Gilfanov (2014), Johansson, Woods, et al. (2016)


Progenitors of individual SNe Ia in starforming galaxies

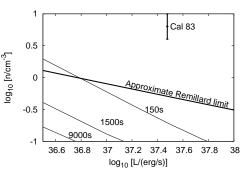
- What about individual sources?
- Most SSSs found without a nebula (Remillard et al. (1995))
- Unclear if this indicates sources have low average ionizing L, or little surrounding ISM

[O III] 5007Å image of the CAL 83 nebula. Remillard et al. (1995), with inset from Gruyters et al. (2012). Image size: 15 × 20 pc.


 Can detect nebulae surrounding individual sources (if sufficiently dense ISM)

 True even after explosion of SN Ia! (for ~recombination time, 10⁵ years!)

[O III] 5007Å surface brightness profiles for SSSs. Woods & Gilfanov (2016)


- But, never put to much use (except Graur+ 2014)
- Why? Remillard+ 1995 looked for nebulae around LMC SSSs, found only 1 out of 6
- But, not constraining for typical ISM densities!

Woods & Gilfanov (2016)

- ISM composed of hot $(n_{\rm ISM} \sim 10^{-2} {\rm cm}^{-3})$, warm $(n_{\rm ISM} \sim 0.1-1 {\rm cm}^{-3})$, and cold phases $(n_{\rm ISM} \gtrsim 10 {\rm cm}^{-3})$
- Filling factors of \sim 45%, \sim 45%, and \sim 5% respectively
- $\bullet\,$ Remillard et al. (1995) only constraining if $\rm n_{\rm ISM} \sim few \; cm^{-3}$
- More detailed treatment in Woods & Gilfanov (2016) gives ${\sim}18\%$ probability of a SSS having a dense, CAL 83-like nebula

- Observations (with the Magellan Baade 6.5m telescope) of LMC SSSs, SN Ia remnants (PI: A. Clocchiatti)
- Important regardless of outcome!
 - No detections: No hot, luminous progenitor
 - Detection: Measure progenitor's L,T!

Woods & Gilfanov (2016)

Summary

- Many models of SN la progenitors predict a hot, luminous phase prior to explosion – can be strong ionizing sources!
- No contribution from "hot" (10⁵K ≤ T ≤ 10⁶K) single degenerate channel at late delay times (≤10% of total rate, or no more than ≤ 0.01M_☉ accreted if all SNe Ia were single degenerate)
- We can constrain (or hopefully measure!) the temperature and ionizing luminosity of the progenitors of individual, nearby SNe Ia by searching for faint, extended emission-line regions – underway now!