Gamma-ray emission from middle aged supernova remnants interacting with molecular clouds

Xiaping Tang

MPA

Collaborator: Roger Chevalier (UVA)

06/06/2016

Victor Hoss	Table 2.1 Summary of Hess' results			
		Measured radiation (ions per cc per second)		
measured the	Mean height from ground (m)	Electrosc. 1	Electrosc. 2	Electrosc. 3
ionization rate of	0	16.3	11.8	19.6
our atmosphere	Up to 200	15.4	11.1	19.1
	300-500	15.5	10.4	18.8
with Dalloon	500-1,000	15.6	10.3	20.8
experiments	1,000–2,000	15.9	12.1	22.2
-	2,000–3,000	17.3	13.3	31.2
M. Bertolotti, 2013	3,000–4,000	19.8	16.5	35.2
Celestial Messengers	4,000–5,200	34.4	27.2	-

1934 Baade and Zwicky suggested that CR may originate from SN explosions based on the energy argument

(2) The hypothesis that super-novae emit cosmic rays leads to a very satisfactory agreement with some of the major observations on cosmic rays.

Identify SNRs as CR accelerators

Energetic electrons have been identified in SNRs through detection of synchrotron radiation in both radio and X-ray wavelengths.

Evidence for pion decay from accelerated protons is revealed in the γ -ray observation of SNRs recently.

Implications based on observed spectral shape

Pion-decay signature ----> Dominated by hadronic emission

Smooth transition from -----> One emission GeV to TeV similar origin

Implication based on multiwavelength image morphology

1. The GeV and TeV emission regions are well correlated with each other in space.

2. The high energy γ -ray emission region is spatially correlated with the molecular cloud interaction region.

3. The brightest γ -ray emission region is not well correlated with non-thermal radio emission region.

Tang&Chevalier 14 with modification

Exponential cutoff due to limited age of the remnant, same as Uchiyama et al 10

Time dependent diffusive shock acceleration in the test particle limit

Continuous injection of the same input spectrum

Energy independent diffusion with $t_{age}/\tau=2t_{MC}/\tau=2$ and filling factor f =0.2 Pion-decay emission maintains the pre-existing CR spectrum shape at high energy

Summary and future work

A shell-clump interaction model focusing on radiative SNRs could explain the radio and γ -ray morphology of SNRs like IC 443.

Time dependent DSA solution could help explain the γ-ray emission from GeV to TeV band. It also implies a spectral hardening around 100 GeV for strong energy dependent diffusion.

Transition from thermal injection dominated seed particles to pre-existing CR particles.

Unification of escaping scenario (escaping and upstream particles) and direct interaction scenario (downstream particles).