Trends in Supernova Remnant Research

Roger Chevalier University of Virginia

Evolution stages in uniform medium (Spitzer 1968, Woltjer 1972,...)

Ejecta- dominated \blacksquare up to ~10³ years Nonradiative Sedov blast wave \blacksquare up to ~10⁴ years Radiative shell \blacksquare up to ~10⁵⁻⁶ years Return to interstellar medium

Radiative remnant

- 1 Nonradiative Sedov-Taylor
- 2,3 Shell formation
- 4,5 Cool, dense shell with hot interior

 3×10^{50} erg, 1 part./cm³

RAC 1974

S147 Hα

Crushed cloud model for SNRs

A CLOSE UP VIEW

McKee & Ostriker 1977

IC 443

Optical H α

Duin & van der Laan (1975) showed detailed correspondence and developed model of radio from compressed IS fields and particles

IC 443 – a molecular cloud interactor

21 cm continuum emission Lee et al. 2008

Radio continuum Shocked CO contours Lee et al. 2012 Early B star (B2, B3) on main sequence (8, 10 M_{\odot}) can result in a supernova that interacts with its parent molecular cloud Molecular cloud structure ■ Interclump medium n~10 cm⁻³ \square Clump $n \sim 10^3$ cm⁻³ **Dense core** $n \sim 10^{5-6} \text{ cm}^{-3}$

Radiative shell/clump interaction model (RAC 99)

Applied to IC 443, W44, 3C 391

Competing model: nonradiative blast wave in intercloud region (Reach + 2005, Uchiyama + 2010)

Column density of HI is about as expected for radiative shell in 10 cm⁻³ gas

Shocked HI contours on optical image Lee et al. 2008

Ackermann+ 2013

Uchiyama+ 2010

Tang & RAC 2014

Figure 5: (left) VERITAS excess map with contours of two tracers of shocked gas, HCO^+ (red) and ${}^{12}CO$ (yellow) overlaid. (right) The *Fermi*-LAT counts map, with the same contours overlaid.

Humensky +Veritas 2015

Figure 1: Excess map for the field including IC 443, with the color scale indicating counts integrated within a radius of 0.09° about each point. White contours indicate the radio shell and black contours indicate the significance of the VERITAS observations at the 3, 6, and 9 σ levels. Locations of maser emission are marked in red, while the location of a likely pulsar wind nebula is marked in green.

Humensky +Veritas 2015

2Mass Blue, J band, ionic emission from shocks Red, K band, H₂ emission from shocks

Rho et al. 2001

Filament in NGC 6334 0.1 pc width ~ 10 pc long Massive star forming region

 $350 \,\mu$ dust emission Andre + 2016

Models for "mixed morphology" remnants (IC 443, W44,...)

Crushed cloud model

- X-rays indicate current shock velocity
- Mostly nonradiative shock
- Ages $10^{3'}$ s of years

Radiative shell model

- X-rays from earlier phase and left in interior
- Mostly radiative shock
- Ages $10^{4'}$ s of years

White & Long 1991

Chevalier 1999, Shelton, Cox...

Pulsar wind in SN ejecta: the Crab

Crab Nebula • M1

HST • WFPC2

Shell driven by the pulsar bubble in freely expanding ejecta is accelerated and subject to Rayleigh-Taylor instability

Assuming a normal SN energy, SNR shock is at large radius

RAC 1977

NASA, ESA, and J. Hester (Arizona State University)

STScI-PRC05-37

Inner and outer interaction

Blondin, RAC, Frierson 01

Chandra, HST

NASA/Spitzer/Gehrz Infrared

3C 58 Chandra Slane et al. 04

X-ray photon index based on KC 84 MHD model

Slane et al. 04 (also Reynolds 03)

Diffusion/Advection Model (Tang+RAC 12)

 Analytical and Monte Carlo models
Reflecting outer boundary tends to flatten outer index profile
Diffusion length < observed filament length

3C 58

John Blondin, RAC

Shocked region driven by the supernova RAC, Blondin + 92

Blondin, RAC, Frierson 01

Post-blowout phase

2-dimensional

3-dimensional

The approximate condition for the blow-out to occur is that the deposited pulsar spin down energy be > than the SN energy E_{SN}
If E_{SN} is 10⁵¹ erg, an initial pulsar period in the msec range is needed. May apply to magnetar model for superluminous supernovae (Chen + 16)
If E_{SN} is 10⁵⁰ erg, the period can be 3× higher.

■ If Crab were a normal 10⁵¹ erg supernova, would expect to see external signs Constraints on the Crab ■ Abundances suggest 8-10 M_☉ progenitor ■ Velocity, age, radius, mass of the nebula ■ Most consistent with a low energy (~ 10^{50} erg) supernova

Acceleration, mass, cooling shock

(Yang + RAC 15)

RAC Gull 75

Gull Fesen 82

After > 40 years, many mysteries still persist and new ones have come along

Shocked MHD flow model Toroidal magnetic field Advective flow of particles, with B field

Kennel & Coroniti 84